ztptrs (l) - Linux Manuals
ztptrs: solves a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,
Command to display ztptrs
manual in Linux: $ man l ztptrs
NAME
ZTPTRS - solves a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,
SYNOPSIS
- SUBROUTINE ZTPTRS(
-
UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, INFO )
-
CHARACTER
DIAG, TRANS, UPLO
-
INTEGER
INFO, LDB, N, NRHS
-
COMPLEX*16
AP( * ), B( LDB, * )
PURPOSE
ZTPTRS solves a triangular system of the form
where A is a triangular matrix of order N stored in packed format,
and B is an N-by-NRHS matrix. A check is made to verify that A is
nonsingular.
ARGUMENTS
- UPLO (input) CHARACTER*1
-
= aqUaq: A is upper triangular;
= aqLaq: A is lower triangular.
- TRANS (input) CHARACTER*1
-
Specifies the form of the system of equations:
= aqNaq: A * X = B (No transpose)
= aqTaq: A**T * X = B (Transpose)
= aqCaq: A**H * X = B (Conjugate transpose)
- DIAG (input) CHARACTER*1
-
= aqNaq: A is non-unit triangular;
= aqUaq: A is unit triangular.
- N (input) INTEGER
-
The order of the matrix A. N >= 0.
- NRHS (input) INTEGER
-
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
- AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
-
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = aqUaq, AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = aqLaq, AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
- B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
-
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
- LDB (input) INTEGER
-
The leading dimension of the array B. LDB >= max(1,N).
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.
Pages related to ztptrs
- ztptrs (3)
- ztptri (l) - computes the inverse of a complex upper or lower triangular matrix A stored in packed format
- ztpttf (l) - copies a triangular matrix A from standard packed format (TP) to rectangular full packed format (TF)
- ztpttr (l) - copies a triangular matrix A from standard packed format (TP) to standard full format (TR)
- ztpcon (l) - estimates the reciprocal of the condition number of a packed triangular matrix A, in either the 1-norm or the infinity-norm
- ztpmv (l) - performs one of the matrix-vector operations x := A*x, or x := Aaq*x, or x := conjg( Aaq )*x,
- ztprfs (l) - provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix
- ztpsv (l) - solves one of the systems of equations A*x = b, or Aaq*x = b, or conjg( Aaq )*x = b,