zlaein (l) - Linux Manuals
zlaein: uses inverse iteration to find a right or left eigenvector corresponding to the eigenvalue W of a complex upper Hessenberg matrix H
Command to display zlaein
manual in Linux: $ man l zlaein
NAME
ZLAEIN - uses inverse iteration to find a right or left eigenvector corresponding to the eigenvalue W of a complex upper Hessenberg matrix H
SYNOPSIS
- SUBROUTINE ZLAEIN(
-
RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
EPS3, SMLNUM, INFO )
-
LOGICAL
NOINIT, RIGHTV
-
INTEGER
INFO, LDB, LDH, N
-
DOUBLE
PRECISION EPS3, SMLNUM
-
COMPLEX*16
W
-
DOUBLE
PRECISION RWORK( * )
-
COMPLEX*16
B( LDB, * ), H( LDH, * ), V( * )
PURPOSE
ZLAEIN uses inverse iteration to find a right or left eigenvector
corresponding to the eigenvalue W of a complex upper Hessenberg
matrix H.
ARGUMENTS
- RIGHTV (input) LOGICAL
-
= .TRUE. : compute right eigenvector;
= .FALSE.: compute left eigenvector.
- NOINIT (input) LOGICAL
-
= .TRUE. : no initial vector supplied in V
= .FALSE.: initial vector supplied in V.
- N (input) INTEGER
-
The order of the matrix H. N >= 0.
- H (input) COMPLEX*16 array, dimension (LDH,N)
-
The upper Hessenberg matrix H.
- LDH (input) INTEGER
-
The leading dimension of the array H. LDH >= max(1,N).
- W (input) COMPLEX*16
-
The eigenvalue of H whose corresponding right or left
eigenvector is to be computed.
- V (input/output) COMPLEX*16 array, dimension (N)
-
On entry, if NOINIT = .FALSE., V must contain a starting
vector for inverse iteration; otherwise V need not be set.
On exit, V contains the computed eigenvector, normalized so
that the component of largest magnitude has magnitude 1; here
the magnitude of a complex number (x,y) is taken to be
|x| + |y|.
- B (workspace) COMPLEX*16 array, dimension (LDB,N)
-
- LDB (input) INTEGER
-
The leading dimension of the array B. LDB >= max(1,N).
- RWORK (workspace) DOUBLE PRECISION array, dimension (N)
-
- EPS3 (input) DOUBLE PRECISION
-
A small machine-dependent value which is used to perturb
close eigenvalues, and to replace zero pivots.
- SMLNUM (input) DOUBLE PRECISION
-
A machine-dependent value close to the underflow threshold.
- INFO (output) INTEGER
-
= 0: successful exit
= 1: inverse iteration did not converge; V is set to the
last iterate.
Pages related to zlaein
- zlaein (3)
- zlaed0 (l) - the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix
- zlaed7 (l) - computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix
- zlaed8 (l) - merges the two sets of eigenvalues together into a single sorted set
- zlaesy (l) - computes the eigendecomposition of a 2-by-2 symmetric matrix ( ( A, B );( B, C ) ) provided the norm of the matrix of eigenvectors is larger than some threshold value
- zlaev2 (l) - computes the eigendecomposition of a 2-by-2 Hermitian matrix [ A B ] [ CONJG(B) C ]
- zla_gbamv (l) - performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y),
- zla_gbrcond_c (l) - ZLA_GBRCOND_C Compute the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector