strsv (l) - Linux Manuals
strsv: solves one of the systems of equations A*x = b, or Aaq*x = b,
NAME
STRSV - solves one of the systems of equations A*x = b, or Aaq*x = b,SYNOPSIS
- SUBROUTINE STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
- INTEGER INCX,LDA,N
- CHARACTER DIAG,TRANS,UPLO
- REAL A(LDA,*),X(*)
PURPOSE
STRSV solves one of the systems of equations
where b and x are n element vectors and A is an n by n unit, or
non-unit, upper or lower triangular matrix.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
ARGUMENTS
- UPLO - CHARACTER*1.
-
On entry, UPLO specifies whether the matrix is an upper or
lower triangular matrix as follows:
UPLO = aqUaq or aquaq A is an upper triangular matrix.
UPLO = aqLaq or aqlaq A is a lower triangular matrix.
Unchanged on exit.
- TRANS - CHARACTER*1.
-
On entry, TRANS specifies the equations to be solved as
follows:
TRANS = aqNaq or aqnaq A*x = b.
TRANS = aqTaq or aqtaq Aaq*x = b.
TRANS = aqCaq or aqcaq Aaq*x = b.
Unchanged on exit.
- DIAG - CHARACTER*1.
-
On entry, DIAG specifies whether or not A is unit
triangular as follows:
DIAG = aqUaq or aquaq A is assumed to be unit triangular.
DIAG = aqNaq or aqnaq A is not assumed to be unit triangular.
Unchanged on exit.
- N - INTEGER.
- On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit.
- A - REAL array of DIMENSION ( LDA, n ).
- Before entry with UPLO = aqUaq or aquaq, the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = aqLaq or aqlaq, the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = aqUaq or aquaq, the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit.
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit.
- X - REAL array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x.
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit.
FURTHER DETAILS
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.