slanv2 (l) - Linux Manuals
slanv2: computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form
Command to display slanv2
manual in Linux: $ man l slanv2
NAME
SLANV2 - computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form
SYNOPSIS
- SUBROUTINE SLANV2(
-
A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
-
REAL
A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
PURPOSE
SLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
conjugate eigenvalues.
ARGUMENTS
- A (input/output) REAL
-
B (input/output) REAL
C (input/output) REAL
D (input/output) REAL
On entry, the elements of the input matrix.
On exit, they are overwritten by the elements of the
standardised Schur form.
- RT1R (output) REAL
-
RT1I (output) REAL
RT2R (output) REAL
RT2I (output) REAL
The real and imaginary parts of the eigenvalues. If the
eigenvalues are a complex conjugate pair, RT1I > 0.
- CS (output) REAL
-
SN (output) REAL
Parameters of the rotation matrix.
FURTHER DETAILS
Modified by V. Sima, Research Institute for Informatics, Bucharest,
Romania, to reduce the risk of cancellation errors,
when computing real eigenvalues, and to ensure, if possible, that
abs(RT1R) >= abs(RT2R).
Pages related to slanv2
- slanv2 (3)
- slaneg (l) - computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal T - sigma I = L D L^T
- slangb (l) - returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n band matrix A, with kl sub-diagonals and ku super-diagonals
- slange (l) - returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A
- slangt (l) - returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real tridiagonal matrix A
- slanhs (l) - returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hessenberg matrix A
- slansb (l) - returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n by n symmetric band matrix A, with k super-diagonals
- slansf (l) - returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A in RFP format
- slansp (l) - returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A, supplied in packed form
- slanst (l) - returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix A