slags2 (l) - Linux Manuals
slags2: computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then Uaq*A*Q = Uaq*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and Vaq*B*Q = Vaq*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then Uaq*A*Q = Uaq*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and Vaq*B*Q = Vaq*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Zaq denotes the transpose of Z
Command to display slags2
manual in Linux: $ man l slags2
NAME
SLAGS2 - computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then Uaq*A*Q = Uaq*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and Vaq*B*Q = Vaq*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then Uaq*A*Q = Uaq*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and Vaq*B*Q = Vaq*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Zaq denotes the transpose of Z
SYNOPSIS
- SUBROUTINE SLAGS2(
-
UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
SNV, CSQ, SNQ )
-
LOGICAL
UPPER
-
REAL
A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
SNU, SNV
PURPOSE
SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
ARGUMENTS
- UPPER (input) LOGICAL
-
= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
- A1 (input) REAL
-
A2 (input) REAL
A3 (input) REAL
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.
- B1 (input) REAL
-
B2 (input) REAL
B3 (input) REAL
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.
- CSU (output) REAL
-
SNU (output) REAL
The desired orthogonal matrix U.
- CSV (output) REAL
-
SNV (output) REAL
The desired orthogonal matrix V.
- CSQ (output) REAL
-
SNQ (output) REAL
The desired orthogonal matrix Q.
Pages related to slags2
- slags2 (3)
- slag2 (l) - computes the eigenvalues of a 2 x 2 generalized eigenvalue problem A - w B, with scaling as necessary to avoid over-/underflow
- slag2d (l) - converts a SINGLE PRECISION matrix, SA, to a DOUBLE PRECISION matrix, A
- slagtf (l) - factorizes the matrix (T - lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as T - lambda*I = PLU,
- slagtm (l) - performs a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be 0., 1., or -1
- slagts (l) - may be used to solve one of the systems of equations (T - lambda*I)*x = y or (T - lambda*I)aq*x = y,
- slagv2 (l) - computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
- sla_gbamv (l) - performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y),