dstevx (l) - Linux Manuals
dstevx: computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
Command to display dstevx manual in Linux: $ man l dstevx
 
NAME
DSTEVX - computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
SYNOPSIS
- SUBROUTINE DSTEVX(
- 
JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
 
- 
CHARACTER
JOBZ, RANGE
 
- 
INTEGER
IL, INFO, IU, LDZ, M, N
 
- 
DOUBLE
PRECISION ABSTOL, VL, VU
 
- 
INTEGER
IFAIL( * ), IWORK( * )
 
- 
DOUBLE
PRECISION D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
PURPOSE
DSTEVX computes selected eigenvalues and, optionally, eigenvectors
of a real symmetric tridiagonal matrix A.  Eigenvalues and
eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
ARGUMENTS
- JOBZ    (input) CHARACTER*1
- 
= aqNaq:  Compute eigenvalues only;
 = aqVaq:  Compute eigenvalues and eigenvectors.
- RANGE   (input) CHARACTER*1
- 
 = aqAaq: all eigenvalues will be found.
 = aqVaq: all eigenvalues in the half-open interval (VL,VU]
will be found.
= aqIaq: the IL-th through IU-th eigenvalues will be found.
- N       (input) INTEGER
- 
The order of the matrix.  N >= 0.
- D       (input/output) DOUBLE PRECISION array, dimension (N)
- 
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
- E       (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
- 
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
- VL      (input) DOUBLE PRECISION
- 
VU      (input) DOUBLE PRECISION
If RANGE=aqVaq, the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = aqAaq or aqIaq.
- IL      (input) INTEGER
- 
IU      (input) INTEGER
If RANGE=aqIaq, the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = aqAaq or aqVaq.
- ABSTOL  (input) DOUBLE PRECISION
- 
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS *   max( |a|,|b| ) ,
where EPS is the machine precision.  If ABSTOL is less
than or equal to zero, then  EPS*|T|  will be used in
its place, where |T| is the 1-norm of the tridiagonal
matrix.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*DLAMCH(aqSaq), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*DLAMCH(aqSaq).
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
- M       (output) INTEGER
- 
The total number of eigenvalues found.  0 <= M <= N.
If RANGE = aqAaq, M = N, and if RANGE = aqIaq, M = IU-IL+1.
- W       (output) DOUBLE PRECISION array, dimension (N)
- 
The first M elements contain the selected eigenvalues in
ascending order.
- Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
- 
If JOBZ = aqVaq, then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge (INFO > 0), then that
column of Z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in IFAIL.  If JOBZ = aqNaq, then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = aqVaq, the exact value of M
is not known in advance and an upper bound must be used.
- LDZ     (input) INTEGER
- 
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = aqVaq, LDZ >= max(1,N).
- WORK    (workspace) DOUBLE PRECISION array, dimension (5*N)
- 
- IWORK   (workspace) INTEGER array, dimension (5*N)
- 
- IFAIL   (output) INTEGER array, dimension (N)
- 
If JOBZ = aqVaq, then if INFO = 0, the first M elements of
IFAIL are zero.  If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = aqNaq, then IFAIL is not referenced.
- INFO    (output) INTEGER
- 
= 0:  successful exit
 < 0:  if INFO = -i, the i-th argument had an illegal value
 > 0:  if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.