dsbev (l) - Linux Manuals
dsbev: computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
Command to display dsbev
manual in Linux: $ man l dsbev
NAME
DSBEV - computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
SYNOPSIS
- SUBROUTINE DSBEV(
-
JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
INFO )
-
CHARACTER
JOBZ, UPLO
-
INTEGER
INFO, KD, LDAB, LDZ, N
-
DOUBLE
PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
PURPOSE
DSBEV computes all the eigenvalues and, optionally, eigenvectors of
a real symmetric band matrix A.
ARGUMENTS
- JOBZ (input) CHARACTER*1
-
= aqNaq: Compute eigenvalues only;
= aqVaq: Compute eigenvalues and eigenvectors.
- UPLO (input) CHARACTER*1
-
= aqUaq: Upper triangle of A is stored;
= aqLaq: Lower triangle of A is stored.
- N (input) INTEGER
-
The order of the matrix A. N >= 0.
- KD (input) INTEGER
-
The number of superdiagonals of the matrix A if UPLO = aqUaq,
or the number of subdiagonals if UPLO = aqLaq. KD >= 0.
- AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)
-
On entry, the upper or lower triangle of the symmetric band
matrix A, stored in the first KD+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = aqUaq, AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = aqLaq, AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the
reduction to tridiagonal form. If UPLO = aqUaq, the first
superdiagonal and the diagonal of the tridiagonal matrix T
are returned in rows KD and KD+1 of AB, and if UPLO = aqLaq,
the diagonal and first subdiagonal of T are returned in the
first two rows of AB.
- LDAB (input) INTEGER
-
The leading dimension of the array AB. LDAB >= KD + 1.
- W (output) DOUBLE PRECISION array, dimension (N)
-
If INFO = 0, the eigenvalues in ascending order.
- Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
-
If JOBZ = aqVaq, then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = aqNaq, then Z is not referenced.
- LDZ (input) INTEGER
-
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = aqVaq, LDZ >= max(1,N).
- WORK (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2))
-
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
Pages related to dsbev
- dsbev (3)
- dsbevd (l) - computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
- dsbevx (l) - computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
- dsbgst (l) - reduces a real symmetric-definite banded generalized eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
- dsbgv (l) - computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
- dsbgvd (l) - computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
- dsbgvx (l) - computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
- dsbmv (l) - performs the matrix-vector operation y := alpha*A*x + beta*y,
- dsbtrd (l) - reduces a real symmetric band matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation