dlag2s (l) - Linux Manuals
dlag2s: converts a DOUBLE PRECISION matrix, SA, to a SINGLE PRECISION matrix, A
Command to display dlag2s
manual in Linux: $ man l dlag2s
NAME
DLAG2S - converts a DOUBLE PRECISION matrix, SA, to a SINGLE PRECISION matrix, A
SYNOPSIS
- SUBROUTINE DLAG2S(
-
M, N, A, LDA, SA, LDSA, INFO )
-
INTEGER
INFO, LDA, LDSA, M, N
-
REAL
SA( LDSA, * )
-
DOUBLE
PRECISION A( LDA, * )
PURPOSE
DLAG2S converts a DOUBLE PRECISION matrix, SA, to a SINGLE
PRECISION matrix, A.
RMAX is the overflow for the SINGLE PRECISION arithmetic
DLAG2S checks that all the entries of A are between -RMAX and
RMAX. If not the convertion is aborted and a flag is raised.
This is an auxiliary routine so there is no argument checking.
ARGUMENTS
- M (input) INTEGER
-
The number of lines of the matrix A. M >= 0.
- N (input) INTEGER
-
The number of columns of the matrix A. N >= 0.
- A (input) DOUBLE PRECISION array, dimension (LDA,N)
-
On entry, the M-by-N coefficient matrix A.
- LDA (input) INTEGER
-
The leading dimension of the array A. LDA >= max(1,M).
- SA (output) REAL array, dimension (LDSA,N)
-
On exit, if INFO=0, the M-by-N coefficient matrix SA; if
INFO>0, the content of SA is unspecified.
- LDSA (input) INTEGER
-
The leading dimension of the array SA. LDSA >= max(1,M).
- INFO (output) INTEGER
-
= 0: successful exit.
= 1: an entry of the matrix A is greater than the SINGLE
PRECISION overflow threshold, in this case, the content
of SA in exit is unspecified.
=========
End of DLAG2S
Pages related to dlag2s
- dlag2s (3)
- dlag2 (l) - computes the eigenvalues of a 2 x 2 generalized eigenvalue problem A - w B, with scaling as necessary to avoid over-/underflow
- dlags2 (l) - computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then Uaq*A*Q = Uaq*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and Vaq*B*Q = Vaq*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then Uaq*A*Q = Uaq*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and Vaq*B*Q = Vaq*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Zaq denotes the transpose of Z
- dlagtf (l) - factorizes the matrix (T - lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as T - lambda*I = PLU,
- dlagtm (l) - performs a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be 0., 1., or -1
- dlagts (l) - may be used to solve one of the systems of equations (T - lambda*I)*x = y or (T - lambda*I)aq*x = y,
- dlagv2 (l) - computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
- dla_gbamv (l) - performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y),