dla_wwaddw (l) - Linux Manuals
dla_wwaddw: DLA_WWADDW add a vector W into a doubled-single vector (X, Y)
Command to display dla_wwaddw
manual in Linux: $ man l dla_wwaddw
NAME
DLA_WWADDW - DLA_WWADDW add a vector W into a doubled-single vector (X, Y)
SYNOPSIS
- SUBROUTINE DLA_WWADDW(
-
N, X, Y, W )
-
IMPLICIT
NONE
-
INTEGER
N
-
DOUBLE
PRECISION X( * ), Y( * ), W( * )
PURPOSE
DLA_WWADDW adds a vector W into a doubled-single vector
(X, Y).
This works for all extant IBMaqs hex and binary floating point
arithmetics, but not for decimal.
ARGUMENTS
- N (input) INTEGER
-
The length of vectors X, Y, and W.
X, Y (input/output) DOUBLE PRECISION array, length N
The doubled-single accumulation vector.
- W (input) DOUBLE PRECISION array, length N
-
The vector to be added.
Pages related to dla_wwaddw
- dla_wwaddw (3)
- dla_gbamv (l) - performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y),
- dla_gbrcond (l) - DLA_GERCOND Estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- dla_gbrfsx_extended (l) - computes ..
- dla_geamv (l) - performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y),
- dla_gercond (l) - DLA_GERCOND estimate the Skeel condition number of op(A) * op2(C) where op2 is determined by CMODE as follows CMODE = 1 op2(C) = C CMODE = 0 op2(C) = I CMODE = -1 op2(C) = inv(C) The Skeel condition number cond(A) = norminf( |inv(A)||A| ) is computed by computing scaling factors R such that diag(R)*A*op2(C) is row equilibrated and computing the standard infinity-norm condition number
- dla_gerfsx_extended (l) - computes ..
- dla_lin_berr (l) - DLA_LIN_BERR compute component-wise relative backward error from the formula max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) where abs(Z) is the component-wise absolute value of the matrix or vector Z