dgeqrf (l) - Linux Manuals
dgeqrf: computes a QR factorization of a real M-by-N matrix A
NAME
DGEQRF - computes a QR factorization of a real M-by-N matrix ASYNOPSIS
- SUBROUTINE DGEQRF(
- M, N, A, LDA, TAU, WORK, LWORK, INFO )
- INTEGER INFO, LDA, LWORK, M, N
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
PURPOSE
DGEQRF computes a QR factorization of a real M-by-N matrix A: A = Q * R.ARGUMENTS
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details).
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
- TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further Details).
- WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N). For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectorsQ
Each H(i) has the form
H(i)
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).