dgbsv (l) - Linux Manuals
dgbsv: computes the solution to a real system of linear equations A * X = B, where A is a band matrix of order N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices
NAME
DGBSV - computes the solution to a real system of linear equations A * X = B, where A is a band matrix of order N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matricesSYNOPSIS
- SUBROUTINE DGBSV(
- N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
- INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
- INTEGER IPIV( * )
- DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
PURPOSE
DGBSV computes the solution to a real system of linear equations A * X = B, where A is a band matrix of order N with KL subdiagonals and KU superdiagonals, and X and B are N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = L * U, where L is a product of permutation and unit lower triangular matrices with KL subdiagonals, and U is upper triangular with KL+KU superdiagonals. The factored form of A is then used to solve the system of equations A * X = B.ARGUMENTS
- N (input) INTEGER
- The number of linear equations, i.e., the order of the matrix A. N >= 0.
- KL (input) INTEGER
- The number of subdiagonals within the band of A. KL >= 0.
- KU (input) INTEGER
- The number of superdiagonals within the band of A. KU >= 0.
- NRHS (input) INTEGER
- The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
- AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
- On entry, the matrix A in band storage, in rows KL+1 to 2*KL+KU+1; rows 1 to KL of the array need not be set. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) On exit, details of the factorization: U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. See below for further details.
- LDAB (input) INTEGER
- The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
- IPIV (output) INTEGER array, dimension (N)
- The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIV(i).
- B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
- On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,N).
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and the solution has not been computed.
FURTHER DETAILS
The band storage scheme is illustrated by the following example, when M = N = 6, KL = 2, KU = 1:On entry: On exit:
a11
a21
a31