cunmtr (l) - Linux Manuals
cunmtr: overwrites the general complex M-by-N matrix C with SIDE = aqLaq SIDE = aqRaq TRANS = aqNaq
NAME
CUNMTR - overwrites the general complex M-by-N matrix C with SIDE = aqLaq SIDE = aqRaq TRANS = aqNaqSYNOPSIS
- SUBROUTINE CUNMTR(
- SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
- CHARACTER SIDE, TRANS, UPLO
- INTEGER INFO, LDA, LDC, LWORK, M, N
- COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
PURPOSE
CUNMTR overwrites the general complex M-by-N matrix C with TRANS = aqCaq: Q**H * C C * Q**Hwhere Q is a complex unitary matrix of order nq, with nq = m if SIDE = aqLaq and nq = n if SIDE = aqRaq. Q is defined as the product of nq-1 elementary reflectors, as returned by CHETRD:
if UPLO = aqUaq, Q = H(nq-1) . . . H(2) H(1);
if UPLO = aqLaq, Q = H(1) H(2) . . . H(nq-1).
ARGUMENTS
- SIDE (input) CHARACTER*1
-
= aqLaq: apply Q or Q**H from the Left;
= aqRaq: apply Q or Q**H from the Right. - UPLO (input) CHARACTER*1
-
= aqUaq: Upper triangle of A contains elementary reflectors from CHETRD; = aqLaq: Lower triangle of A contains elementary reflectors from CHETRD. - TRANS (input) CHARACTER*1
-
= aqNaq: No transpose, apply Q;
= aqCaq: Conjugate transpose, apply Q**H. - M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
- A (input) COMPLEX array, dimension
- (LDA,M) if SIDE = aqLaq (LDA,N) if SIDE = aqRaq The vectors which define the elementary reflectors, as returned by CHETRD.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M) if SIDE = aqLaq; LDA >= max(1,N) if SIDE = aqRaq.
- TAU (input) COMPLEX array, dimension
- (M-1) if SIDE = aqLaq (N-1) if SIDE = aqRaq TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CHETRD.
- C (input/output) COMPLEX array, dimension (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
- WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- LWORK (input) INTEGER
- The dimension of the array WORK. If SIDE = aqLaq, LWORK >= max(1,N); if SIDE = aqRaq, LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = aqLaq, and LWORK >=M*NB if SIDE = aqRaq, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value