cpotf2 (l) - Linux Manuals
cpotf2: computes the Cholesky factorization of a complex Hermitian positive definite matrix A
NAME
CPOTF2 - computes the Cholesky factorization of a complex Hermitian positive definite matrix ASYNOPSIS
- SUBROUTINE CPOTF2(
- UPLO, N, A, LDA, INFO )
- CHARACTER UPLO
- INTEGER INFO, LDA, N
- COMPLEX A( LDA, * )
PURPOSE
CPOTF2 computes the Cholesky factorization of a complex Hermitian positive definite matrix A. The factorization has the formA
A
where U is an upper triangular matrix and L is lower triangular. This is the unblocked version of the algorithm, calling Level 2 BLAS.
ARGUMENTS
- UPLO (input) CHARACTER*1
-
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored.
= aqUaq: Upper triangular
= aqLaq: Lower triangular - N (input) INTEGER
- The order of the matrix A. N >= 0.
- A (input/output) COMPLEX array, dimension (LDA,N)
- On entry, the Hermitian matrix A. If UPLO = aqUaq, the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = aqLaq, the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, the factor U or L from the Cholesky factorization A = Uaq*U or A = L*Laq.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,N).
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not positive definite, and the factorization could not be completed.