clag2z (l) - Linux Manuals
clag2z: converts a COMPLEX matrix, SA, to a COMPLEX*16 matrix, A
Command to display clag2z
manual in Linux: $ man l clag2z
NAME
CLAG2Z - converts a COMPLEX matrix, SA, to a COMPLEX*16 matrix, A
SYNOPSIS
- SUBROUTINE CLAG2Z(
-
M, N, SA, LDSA, A, LDA, INFO )
-
INTEGER
INFO, LDA, LDSA, M, N
-
COMPLEX
SA( LDSA, * )
-
COMPLEX*16
A( LDA, * )
PURPOSE
CLAG2Z converts a COMPLEX matrix, SA, to a COMPLEX*16 matrix, A.
Note that while it is possible to overflow while converting
from double to single, it is not possible to overflow when
converting from single to double.
This is an auxiliary routine so there is no argument checking.
ARGUMENTS
- M (input) INTEGER
-
The number of lines of the matrix A. M >= 0.
- N (input) INTEGER
-
The number of columns of the matrix A. N >= 0.
- SA (input) COMPLEX array, dimension (LDSA,N)
-
On entry, the M-by-N coefficient matrix SA.
- LDSA (input) INTEGER
-
The leading dimension of the array SA. LDSA >= max(1,M).
- A (output) COMPLEX*16 array, dimension (LDA,N)
-
On exit, the M-by-N coefficient matrix A.
- LDA (input) INTEGER
-
The leading dimension of the array A. LDA >= max(1,M).
- INFO (output) INTEGER
-
= 0: successful exit
=========
End of CLAG2Z
Pages related to clag2z
- clag2z (3)
- clags2 (l) - computes 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then Uaq*A*Q = Uaq*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and Vaq*B*Q = Vaq*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then Uaq*A*Q = Uaq*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and Vaq*B*Q = Vaq*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) where U = ( CSU SNU ), V = ( CSV SNV ),
- clagtm (l) - performs a matrix-vector product of the form B := alpha * A * X + beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha and beta are real scalars, each of which may be 0., 1., or -1
- cla_gbamv (l) - performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y),
- cla_gbrcond_c (l) - CLA_GBRCOND_C Compute the infinity norm condition number of op(A) * inv(diag(C)) where C is a REAL vector
- cla_gbrcond_x (l) - CLA_GBRCOND_X Compute the infinity norm condition number of op(A) * diag(X) where X is a COMPLEX vector
- cla_gbrfsx_extended (l) - computes ..
- cla_geamv (l) - performs one of the matrix-vector operations y := alpha*abs(A)*abs(x) + beta*abs(y),