chbevd (l) - Linux Manuals

chbevd: computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

NAME

CHBEVD - computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

SYNOPSIS

SUBROUTINE CHBEVD(
JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )

    
CHARACTER JOBZ, UPLO

    
INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N

    
INTEGER IWORK( * )

    
REAL RWORK( * ), W( * )

    
COMPLEX AB( LDAB, * ), WORK( * ), Z( LDZ, * )

PURPOSE

CHBEVD computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A. If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

ARGUMENTS

JOBZ (input) CHARACTER*1
= aqNaq: Compute eigenvalues only;
= aqVaq: Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1

= aqUaq: Upper triangle of A is stored;
= aqLaq: Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals of the matrix A if UPLO = aqUaq, or the number of subdiagonals if UPLO = aqLaq. KD >= 0.
AB (input/output) COMPLEX array, dimension (LDAB, N)
On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = aqUaq, AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = aqLaq, AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = aqUaq, the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = aqLaq, the diagonal and first subdiagonal of T are returned in the first two rows of AB.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= KD + 1.
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z (output) COMPLEX array, dimension (LDZ, N)
If JOBZ = aqVaq, then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = aqNaq, then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if JOBZ = aqVaq, LDZ >= max(1,N).
WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If N <= 1, LWORK must be at least 1. If JOBZ = aqNaq and N > 1, LWORK must be at least N. If JOBZ = aqVaq and N > 1, LWORK must be at least 2*N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK (workspace/output) REAL array,
dimension (LRWORK) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORK (input) INTEGER
The dimension of array RWORK. If N <= 1, LRWORK must be at least 1. If JOBZ = aqNaq and N > 1, LRWORK must be at least N. If JOBZ = aqVaq and N > 1, LRWORK must be at least 1 + 5*N + 2*N**2. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK (input) INTEGER
The dimension of array IWORK. If JOBZ = aqNaq or N <= 1, LIWORK must be at least 1. If JOBZ = aqVaq and N > 1, LIWORK must be at least 3 + 5*N . If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.