zuncsd2by1 (3) - Linux Manuals
NAME
zuncsd2by1.f -
SYNOPSIS
Functions/Subroutines
subroutine zuncsd2by1 (JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO)
ZUNCSD2BY1
Function/Subroutine Documentation
subroutine zuncsd2by1 (characterJOBU1, characterJOBU2, characterJOBV1T, integerM, integerP, integerQ, complex*16, dimension(ldx11,*)X11, integerLDX11, complex*16, dimension(ldx21,*)X21, integerLDX21, double precision, dimension(*)THETA, complex*16, dimension(ldu1,*)U1, integerLDU1, complex*16, dimension(ldu2,*)U2, integerLDU2, complex*16, dimension(ldv1t,*)V1T, integerLDV1T, complex*16, dimension(*)WORK, integerLWORK, double precision, dimension(*)RWORK, integerLRWORK, integer, dimension(*)IWORK, integerINFO)
ZUNCSD2BY1 .SH "Purpose:"
ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with orthonormal columns that has been partitioned into a 2-by-1 block structure: [ I 0 0 ] [ 0 C 0 ] [ X11 ] [ U1 | ] [ 0 0 0 ] X = [-----] = [---------] [----------] V1**T . [ X21 ] [ | U2 ] [ 0 0 0 ] [ 0 S 0 ] [ 0 0 I ] X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P, (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q)..fi Parameters:
- JOBU1
JOBU1 is CHARACTER
= 'Y': U1 is computed;
otherwise: U1 is not computed.
JOBU2JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed.
JOBV1TJOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed.
MM is INTEGER The number of rows and columns in X.
PP is INTEGER The number of rows in X11 and X12. 0 <= P <= M.
QQ is INTEGER The number of columns in X11 and X21. 0 <= Q <= M.
X11X11 is COMPLEX*16 array, dimension (LDX11,Q) On entry, part of the unitary matrix whose CSD is desired.
LDX11LDX11 is INTEGER The leading dimension of X11. LDX11 >= MAX(1,P).
X21X21 is COMPLEX*16 array, dimension (LDX21,Q) On entry, part of the unitary matrix whose CSD is desired.
LDX21LDX21 is INTEGER The leading dimension of X21. LDX21 >= MAX(1,M-P).
THETATHETA is COMPLEX*16 array, dimension (R), in which R = MIN(P,M-P,Q,M-Q). C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
U1U1 is COMPLEX*16 array, dimension (P) If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
LDU1LDU1 is INTEGER The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= MAX(1,P).
U2U2 is COMPLEX*16 array, dimension (M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary matrix U2.
LDU2LDU2 is INTEGER The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P).
V1TV1T is COMPLEX*16 array, dimension (Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary matrix V1**T.
LDV1TLDV1T is INTEGER The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= MAX(1,Q).
WORKWORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. INFO specifies the number of nonzero PHI's.
LWORKLWORK is INTEGER The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
RWORKRWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. INFO specifies the number of nonzero PHI's.
LRWORKLRWORK is INTEGER The dimension of the array RWORK. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the work array, and no error message related to LRWORK is issued by XERBLA.
aram[out] IWORK nsion (M-MIN(P,M-P,Q,M-Q))
INFOINFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: ZBBCSD did not converge. See the description of WORK above for details.
References:
- [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
Author:
-
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
- July 2012
Definition at line 259 of file zuncsd2by1.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.