std::void_t (3) - Linux Manuals
std::void_t: std::void_t
Command to display std::void_t
manual in Linux: $ man 3 std::void_t
NAME
std::void_t - std::void_t
Synopsis
Defined in header <type_traits>
template< class... > (since C++17)
using void_t = void;
Utility metafunction that maps a sequence of any types to the type void
Notes
This metafunction is used in template metaprogramming to detect ill-formed types in SFINAE context:
// primary template handles types that have no nested ::type member:
template< class, class = std::void_t<> >
struct has_type_member : std::false_type { };
// specialization recognizes types that do have a nested ::type member:
template< class T >
struct has_type_member<T, std::void_t<typename T::type>> : std::true_type { };
It can also be used to detect validity of an expression:
// primary template handles types that do not support pre-increment:
template< class, class = std::void_t<> >
struct has_pre_increment_member : std::false_type { };
// specialization recognizes types that do support pre-increment:
template< class T >
struct has_pre_increment_member<T,
std::void_t<decltype( ++std::declval<T&>() )>
> : std::true_type { };
Until CWG_1558 (a C++14 defect), unused parameters in alias_templates were not guaranteed to ensure SFINAE and could be ignored, so earlier compilers require a more complex definition of void_t, such as
template<typename... Ts> struct make_void { typedef void type;};
template<typename... Ts> using void_t = typename make_void<Ts...>::type;
Examples
// Run this code
#include <iostream>
#include <type_traits>
#include <vector>
#include <map>
class A {};
template <typename T, typename = void>
struct is_iterable : std::false_type {};
template <typename T>
struct is_iterable<T, std::void_t<decltype(std::declval<T>().begin()),
decltype(std::declval<T>().end())>>
: std::true_type {};
// An iterator trait which value_type is always the value_type of the
// iterated container, even with back_insert_iterator which value_type is void
template <typename T, typename = void>
struct iterator_trait
: std::iterator_traits<T> {};
template <typename T>
struct iterator_trait<T, std::void_t<typename T::container_type>>
: std::iterator_traits<typename T::container_type::iterator> {};
int main()
{
std::cout << std::boolalpha;
std::cout << is_iterable<std::vector<double>>::value << '\n';
std::cout << is_iterable<std::map<int, double>>::value << '\n';
std::cout << is_iterable<double>::value << '\n';
std::cout << is_iterable<A>::value << '\n';
std::vector<int> v;
std::cout << std::is_same<iterator_trait<decltype(std::back_inserter(v))>::value_type
, iterator_trait<decltype(v.cbegin())>::value_type >::value << '\n';
}
Output:
true
true
false
false
true
See also
enable_if hides a function overload or template specialization based on compile-time boolean
(class template)
(C++11)
Pages related to std::void_t