std::sqrt(std::valarray) (3) - Linux Manuals
std::sqrt(std::valarray): std::sqrt(std::valarray)
Command to display std::sqrt(std::valarray)
manual in Linux: $ man 3 std::sqrt(std::valarray)
NAME
std::sqrt(std::valarray) - std::sqrt(std::valarray)
Synopsis
Defined in header <valarray>
template< class T >
valarray<T> sqrt( const valarray<T>& va );
For each element in va computes the square root of the value of the element.
Parameters
va - value array to apply the operation to
Return value
Value array containing square roots of the values in va.
Notes
Unqualified function (sqrt) is used to perform the computation. If such function is not available, std::sqrt is used due to argument dependent lookup.
The function can be implemented with the return type different from std::valarray. In this case, the replacement type has the following properties:
* All const member functions of std::valarray are provided.
* std::valarray, std::slice_array, std::gslice_array, std::mask_array and std::indirect_array can be constructed from the replacement type.
* All functions accepting an argument of type const std::valarray&
except begin() and end()
(since C++11) should also accept the replacement type.
* All functions accepting two arguments of type const std::valarray& should accept every combination of const std::valarray& and the replacement type.
* The return type does not add more than two levels of template nesting over the most deeply-nested argument type.
Possible implementation
template<class T>
valarray<T> sqrt(const valarray<T>& va)
{
valarray<T> other = va;
for (T &i : other) {
i = sqrt(i);
}
return other;
}
Example
Finds real roots of multiple quadratic equations.
// Run this code
#include <valarray>
#include <iostream>
int main()
{
std::valarray<double> a(1, 8);
std::valarray<double> b{1, 2, 3, 4, 5, 6, 7, 8};
std::valarray<double> c = -b;
// literals must also be of type T (double in this case)
std::valarray<double> d = std::sqrt((b * b - 4.0 * a * c));
std::valarray<double> x1 = (-b - d) / (2.0 * a);
std::valarray<double> x2 = (-b + d) / (2.0 * a);
std::cout << "quadratic equation root 1, root 2" << "\n";
for (size_t i = 0; i < a.size(); ++i) {
std::cout << a[i] << "x\u00B2 + " << b[i] << "x + " << c[i] << " = 0 ";
std::cout << x1[i] << ", " << x2[i] << "\n";
}
}
Output:
quadratic equation root 1, root 2
1x² + 1x + -1 = 0 -1.61803, 0.618034
1x² + 2x + -2 = 0 -2.73205, 0.732051
1x² + 3x + -3 = 0 -3.79129, 0.791288
1x² + 4x + -4 = 0 -4.82843, 0.828427
1x² + 5x + -5 = 0 -5.8541, 0.854102
1x² + 6x + -6 = 0 -6.87298, 0.872983
1x² + 7x + -7 = 0 -7.88748, 0.887482
1x² + 8x + -8 = 0 -8.89898, 0.898979
See also
applies the function std::pow to two valarrays or a valarray and a value
pow(std::valarray) (function template)
sqrt
sqrtf computes square root (
sqrtl √
x)
(function)
(C++11)
(C++11)
complex square root in the range of the right half-plane
sqrt(std::complex) (function template)
Pages related to std::sqrt(std::valarray)
- std::sqrt(std::complex) (3) - std::sqrt(std::complex)
- std::sqrt,std::sqrtf,std::sqrtl (3) - std::sqrt,std::sqrtf,std::sqrtl
- std::sample (3) - std::sample
- std::scalbn,std::scalbnf,std::scalbnl,std::scalbln,std::scalblnf,std::scalblnl (3) - std::scalbn,std::scalbnf,std::scalbnl,std::scalbln,std::scalblnf,std::scalblnl
- std::scanf,std::fscanf,std::sscanf (3) - std::scanf,std::fscanf,std::sscanf
- std::scoped_allocator_adaptor (3) - std::scoped_allocator_adaptor
- std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...>::allocate (3) - std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...>::allocate
- std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...>::construct (3) - std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...>::construct
- std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...>::deallocate (3) - std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...>::deallocate
- std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...>::destroy (3) - std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...>::destroy