std::sph_legendre,std::sph_legendref,std::sph_legendrel (3) - Linux Manuals
std::sph_legendre,std::sph_legendref,std::sph_legendrel: std::sph_legendre,std::sph_legendref,std::sph_legendrel
NAME
std::sph_legendre,std::sph_legendref,std::sph_legendrel - std::sph_legendre,std::sph_legendref,std::sph_legendrel
Synopsis
double sph_legendre ( unsigned l, unsigned m, double θ );
float sph_legendre ( unsigned l, unsigned m, float θ );
long double sph_legendre ( unsigned l, unsigned m, long double θ );(1) (since C++17)
float sph_legendref( unsigned l, unsigned m, float θ );
long double sph_legendrel( unsigned l, unsigned m, long double θ );
double sph_legendre ( unsigned l, unsigned m, IntegralType θ ); (2) (since C++17)
1) Computes the spherical associated Legendre function of degree l, order m, and polar angle θ.
2) A set of overloads or a function template accepting an argument of any integral_type. Equivalent to (1) after casting the argument to double.
Parameters
l - degree
m - order
θ- polar angle, measured in radians
Return value
If no errors occur, returns the value of the spherical associated Legendre function (that is, spherical harmonic with ϕ = 0) of l, m, and θ, where the spherical harmonic function is defined as Ym
l(θ,ϕ) = (-1)m
[
(2l+1)(l-m)!
4π(l+m)!
]1/2
Pm
l(cosθ)eimϕ
where Pm
l(x) is std::assoc_legendre(l,m,x)) and |m|≤l
Note that the Condon-Shortley_phase_term (-1)m
is included in this definition because it is omitted from the definition of Pm
l in std::assoc_legendre.
Error handling
Errors may be reported as specified in math_errhandling
* If the argument is NaN, NaN is returned and domain error is not reported
* If l≥128, the behavior is implementation-defined
Notes
Implementations that do not support C++17, but support ISO_29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1
An implementation of the spherical harmonic function is available_in_boost.math, and it reduces to this function when called with the parameter phi set to zero.
Example
// Run this code
Output:
External links
Weisstein,_Eric_W._"Spherical_Harmonic." From MathWorld--A Wolfram Web Resource.
See also
assoc_legendre
assoc_legendref
assoc_legendrel associated Legendre polynomials
(C++17)
(C++17)
(C++17)