std::modf,std::modff,std::modfl (3) - Linux Manuals

std::modf,std::modff,std::modfl: std::modf,std::modff,std::modfl

NAME

std::modf,std::modff,std::modfl - std::modf,std::modff,std::modfl

Synopsis


Defined in header <cmath>
float modf ( float x, float* iptr );
float modff( float x, float* iptr ); (since C++11)
double modf ( double x, double* iptr ); (1) (2)
long double modf ( long double x, long double* iptr ); (3)
long double modfl( long double x, long double* iptr ); (since C++11)


1-3) Decomposes given floating point value x into integral and fractional parts, each having the same type and sign as x. The integral part (in floating-point format) is stored in the object pointed to by iptr.

Parameters


x - floating point value
iptr - pointer to floating point value to store the integral part to

Return value


If no errors occur, returns the fractional part of x with the same sign as x. The integral part is put into the value pointed to by iptr.
The sum of the returned value and the value stored in *iptr gives x (allowing for rounding)

Error handling


This function is not subject to any errors specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),


* If x is ±0, ±0 is returned, and ±0 is stored in *iptr.
* If x is ±∞, ±0 is returned, and ±∞ is stored in *iptr.
* If x is NaN, NaN is returned, and NaN is stored in *iptr.
* The returned value is exact, the_current_rounding_mode is ignored

Notes


This function behaves as if implemented as follows:


  double modf(double x, double* iptr)
  {
  #pragma STDC FENV_ACCESS ON
      int save_round = std::fegetround();
      std::fesetround(FE_TOWARDZERO);
      *iptr = std::nearbyint(x);
      std::fesetround(save_round);
      return std::copysign(std::isinf(x) ? 0.0 : x - (*iptr), x);
  }

Example


Compares different floating-point decomposition functions
// Run this code


  #include <iostream>
  #include <cmath>
  #include <limits>


  int main()
  {
      double f = 123.45;
      std::cout << "Given the number " << f << " or " << std::hexfloat
                << f << std::defaultfloat << " in hex,\n";


      double f3;
      double f2 = std::modf(f, &f3);
      std::cout << "modf() makes " << f3 << " + " << f2 << '\n';


      int i;
      f2 = std::frexp(f, &i);
      std::cout << "frexp() makes " << f2 << " * 2^" << i << '\n';


      i = std::ilogb(f);
      std::cout << "logb()/ilogb() make " << f/std::scalbn(1.0, i) << " * "
                << std::numeric_limits<double>::radix
                << "^" << std::ilogb(f) << '\n';


      // special values
      f2 = std::modf(-0.0, &f3);
      std::cout << "modf(-0) makes " << f3 << " + " << f2 << '\n';
      f2 = std::modf(-INFINITY, &f3);
      std::cout << "modf(-Inf) makes " << f3 << " + " << f2 << '\n';


  }

Possible output:


  Given the number 123.45 or 0x1.edccccccccccdp+6 in hex,
  modf() makes 123 + 0.45
  frexp() makes 0.964453 * 2^7
  logb()/ilogb() make 1.92891 * 2^6
  modf(-0) makes -0 + -0
  modf(-Inf) makes -INF + -0

See also


trunc
truncf
truncl nearest integer not greater in magnitude than the given value
        (function)
(C++11)
(C++11)
(C++11)