std::is_sorted_until (3) - Linux Manuals

std::is_sorted_until: std::is_sorted_until

NAME

std::is_sorted_until - std::is_sorted_until

Synopsis


Defined in header <algorithm>
template< class ForwardIt > (since C++11)
ForwardIt is_sorted_until( ForwardIt first, ForwardIt last ); (until C++20)
template< class ForwardIt > (since C++20)
constexpr ForwardIt is_sorted_until( ForwardIt first, ForwardIt last );
template< class ExecutionPolicy, class ForwardIt > (2) (since C++17)
ForwardIt is_sorted_until( ExecutionPolicy&& policy, ForwardIt first, ForwardIt last );
template< class ForwardIt, class Compare > (since C++11)
ForwardIt is_sorted_until( ForwardIt first, ForwardIt last, (1) (until C++20)
Compare comp );
template< class ForwardIt, class Compare >
constexpr ForwardIt is_sorted_until( ForwardIt first, ForwardIt last, (3) (since C++20)
Compare comp );
template< class ExecutionPolicy, class ForwardIt, class Compare >
ForwardIt is_sorted_until( ExecutionPolicy&& policy, ForwardIt first, ForwardIt last, (4) (since C++17)
Compare comp );


Examines the range [first, last) and finds the largest range beginning at first in which the elements are sorted in ascending order.
1) Elements are compared using operator<.
3) Elements are compared using the given binary comparison function comp.
2,4) Same as (1,3), but executed according to policy. These overloads do not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true

Parameters


first, last - the range of elements to examine
policy - the execution policy to use. See execution_policy for details.
              comparison function object (i.e. an object that satisfies the requirements of Compare) which returns true if the first argument is less than (i.e. is ordered before) the second.
              The signature of the comparison function should be equivalent to the following:
              bool cmp(const Type1 &a, const Type2 &b);
comp - While the signature does not need to have const &, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) Type1 and Type2 regardless of value_category (thus, Type1 & is not allowed
              , nor is Type1 unless for Type1 a move is equivalent to a copy
              (since C++11)).
              The types Type1 and Type2 must be such that an object of type ForwardIt can be dereferenced and then implicitly converted to both of them.

Type requirements


-
ForwardIt must meet the requirements of LegacyForwardIterator.

Return value


The upper bound of the largest range beginning at first in which the elements are sorted in ascending order. That is, the last iterator it for which range [first, it) is sorted.

Complexity


linear in the distance between first and last

Exceptions


The overloads with a template parameter named ExecutionPolicy report errors as follows:


* If execution of a function invoked as part of the algorithm throws an exception and ExecutionPolicy is one of the standard_policies, std::terminate is called. For any other ExecutionPolicy, the behavior is implementation-defined.
* If the algorithm fails to allocate memory, std::bad_alloc is thrown.

Possible implementation

First version


  template<class ForwardIt>
  ForwardIt is_sorted_until(ForwardIt first, ForwardIt last)
  {
      return is_sorted_until(first, last, std::less<>());
  }

Second version


  template <class ForwardIt, class Compare>
  ForwardIt is_sorted_until(ForwardIt first, ForwardIt last, Compare comp)
  {
      if (first != last) {
          ForwardIt next = first;
          while (++next != last) {
              if (comp(*next, *first))
                  return next;
              first = next;
          }
      }
      return last;
  }

Notes


std::is_sorted and std::is_sorted_until both return true for empty ranges and ranges of length one.

Example


// Run this code


  #include <iostream>
  #include <algorithm>
  #include <iterator>
  #include <random>


  int main()
  {
      std::random_device rd;
      std::mt19937 g(rd());
      const int N = 6;
      int nums[N] = {3, 1, 4, 1, 5, 9};


      const int min_sorted_size = 4;
      int sorted_size = 0;
      do {
          std::shuffle(nums, nums + N, g);
          int *sorted_end = std::is_sorted_until(nums, nums + N);
          sorted_size = std::distance(nums, sorted_end);


          for (auto i : nums) std::cout << i << ' ';
          std::cout << " : " << sorted_size << " initial sorted elements\n";
      } while (sorted_size < min_sorted_size);
  }

Possible output:


  4 1 9 5 1 3 : 1 initial sorted elements
  4 5 9 3 1 1 : 3 initial sorted elements
  9 3 1 4 5 1 : 1 initial sorted elements
  1 3 5 4 1 9 : 3 initial sorted elements
  5 9 1 1 3 4 : 2 initial sorted elements
  4 9 1 5 1 3 : 2 initial sorted elements
  1 1 4 9 5 3 : 4 initial sorted elements

See also


is_sorted checks whether a range is sorted into ascending order
          (function template)
(C++11)