std::hermite,std::hermitef,std::hermitel (3) - Linux Manuals
std::hermite,std::hermitef,std::hermitel: std::hermite,std::hermitef,std::hermitel
NAME
std::hermite,std::hermitef,std::hermitel - std::hermite,std::hermitef,std::hermitel
Synopsis
double hermite( unsigned int n, double x );
float hermite( unsigned int n, float x );
long double hermite( unsigned int n, long double x ); (1) (since C++17)
float hermitef( unsigned int n, float x );
long double hermitel( unsigned int n, long double x );
double hermite( unsigned int n, IntegralType x ); (2) (since C++17)
1) Computes the (physicist's) Hermite_polynomials of the degree n and argument x
2) A set of overloads or a function template accepting an argument of any integral_type. Equivalent to (1) after casting the argument to double.
Parameters
n - the degree of the polynomial
x - the argument, a value of a floating-point or integral type
Return value
If no errors occur, value of the order-nHermite polynomial of x, that is (-1)n
ex2
dn
dxn
e-x2
, is returned.
Error handling
Errors may be reported as specified in math_errhandling
* If the argument is NaN, NaN is returned and domain error is not reported
* If n is greater or equal than 128, the behavior is implementation-defined
Notes
Implementations that do not support C++17, but support ISO_29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1
An implementation of this function is also available_in_boost.math
The Hermite polynomials are the polynomial solutions of the equation u,,
-2xu,
= -2nu
The first few are:
* hermite(0, x) = 1
* hermite(1, x) = 2x
* hermite(2, x) = 4x2
* hermite(3, x) = 8x3
* hermite(4, x) = 16x4
Example
// Run this code
Output:
External links
Weisstein,_Eric_W._""Hermite_Polynomial." From MathWorld--A Wolfram Web Resource.
See also
laguerre
laguerref
laguerrel Laguerre polynomials
(C++17)
(C++17)
(C++17)
legendre
legendref
legendrel Legendre polynomials
(C++17)
(C++17)
(C++17)