std::fmod,std::fmodf,std::fmodl (3) - Linux Manuals

std::fmod,std::fmodf,std::fmodl: std::fmod,std::fmodf,std::fmodl

NAME

std::fmod,std::fmodf,std::fmodl - std::fmod,std::fmodf,std::fmodl

Synopsis


Defined in header <cmath>
float fmod ( float x, float y );
float fmodf( float x, float y ); (since C++11)
double fmod ( double x, double y ); (1) (2)
long double fmod ( long double x, long double y );
long double fmodl( long double x, long double y ); (3) (since C++11)
Promoted fmod ( Arithmetic1 x, Arithmetic2 y ); (4) (since C++11)


1-3) Computes the floating-point remainder of the division operation x/y.
4) A set of overloads or a function template for all combinations of arguments of arithmetic_type not covered by (1-3). If any argument has integral_type, it is cast to double. If any other argument is long double, then the return type is long double, otherwise it is double.
The floating-point remainder of the division operation x/y calculated by this function is exactly the value x - n*y, where n is x/y with its fractional part truncated.
The returned value has the same sign as x and is less than y in magnitude.

Parameters


x, y - floating point values

Return value


If successful, returns the floating-point remainder of the division x/y as defined above.
If a domain error occurs, an implementation-defined value is returned (NaN where supported)
If a range error occurs due to underflow, the correct result (after rounding) is returned.

Error handling


Errors are reported as specified in math_errhandling.
Domain error may occur if y is zero.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),


* If x is ±0 and y is not zero, ±0 is returned
* If x is ±∞ and y is not NaN, NaN is returned and FE_INVALID is raised
* If y is ±0 and x is not NaN, NaN is returned and FE_INVALID is raised
* If y is ±∞ and x is finite, x is returned.
* If either argument is NaN, NaN is returned

Notes


POSIX_requires that a domain error occurs if x is infinite or y is zero.
std::fmod, but not std::remainder is useful for doing silent wrapping of floating-point types to unsigned integer types: (0.0 <= (y = std::fmod( std::rint(x), 65536.0 )) ? y : 65536.0 + y) is in the range [-0.0 .. 65535.0], which corresponds to unsigned short, but std::remainder(std::rint(x), 65536.0 is in the range [-32767.0, +32768.0], which is outside of the range of signed short.
The double version of fmod behaves as if implemented as follows


  double fmod(double x, double y)
  {
  #pragma STDC FENV_ACCESS ON
      double result = std::remainder(std::fabs(x), (y = std::fabs(y)));
      if (std::signbit(result)) result += y;
      return std::copysign(result, x);
  }


The expression x - trunc(x/y)*y may not equal fmod(x,y) when the rounding of x/y to initialize the argument of trunc loses too much precision (example: x = 30.508474576271183309, y = 6.1016949152542370172)

Example


// Run this code


  #include <iostream>
  #include <cmath>
  #include <cfenv>


  #pragma STDC FENV_ACCESS ON
  int main()
  {
      std::cout << "fmod(+5.1, +3.0) = " << std::fmod(5.1,3) << '\n'
                << "fmod(-5.1, +3.0) = " << std::fmod(-5.1,3) << '\n'
                << "fmod(+5.1, -3.0) = " << std::fmod(5.1,-3) << '\n'
                << "fmod(-5.1, -3.0) = " << std::fmod(-5.1,-3) << '\n';


      // special values
      std::cout << "fmod(+0.0, 1.0) = " << std::fmod(0, 1) << '\n'
                << "fmod(-0.0, 1.0) = " << std::fmod(-0.0, 1) << '\n'
                << "fmod(5.1, Inf) = " << std::fmod(5.1, INFINITY) << '\n';


      // error handling
      std::feclearexcept(FE_ALL_EXCEPT);
      std::cout << "fmod(+5.1, 0) = " << std::fmod(5.1, 0) << '\n';
      if(std::fetestexcept(FE_INVALID))
          std::cout << " FE_INVALID raised\n";
  }

Possible output:


  fmod(+5.1, +3.0) = 2.1
  fmod(-5.1, +3.0) = -2.1
  fmod(+5.1, -3.0) = 2.1
  fmod(-5.1, -3.0) = -2.1
  fmod(+0.0, 1.0) = 0
  fmod(-0.0, 1.0) = -0
  fmod(5.1, Inf) = 5.1
  fmod(+5.1, 0) = -nan
      FE_INVALID raised

See also


div(int)
ldiv
lldiv computes quotient and remainder of integer division
           (function)


(C++11)


remainder
remainderf
remainderl signed remainder of the division operation
           (function)
(C++11)
(C++11)
(C++11)


remquo
remquof
remquol signed remainder as well as the three last bits of the division operation
           (function)
(C++11)
(C++11)
(C++11)