std::experimental::parallel::reduce (3) - Linux Manuals

std::experimental::parallel::reduce: std::experimental::parallel::reduce

NAME

std::experimental::parallel::reduce - std::experimental::parallel::reduce

Synopsis


Defined in header <experimental/numeric>
template<class InputIt>
typename std::iterator_traits<InputIt>::value_type reduce( (1) (parallelism TS)
InputIt first, InputIt last);
template<class ExecutionPolicy, class InputIterator>
typename std::iterator_traits<InputIt>::value_type reduce( (2) (parallelism TS)
ExecutionPolicy&& policy, InputIt first, InputIt last);
template<class InputIt, class T> (3) (parallelism TS)
T reduce(InputIt first, InputIt last, T init);
template<class ExecutionPolicy, class InputIt, class T> (4) (parallelism TS)
T reduce(ExecutionPolicy&& policy, InputIt first, InputIt last, T init);
template<class InputIt, class T, class BinaryOp> (5) (parallelism TS)
T reduce(InputIt first, InputIt last, T init, BinaryOp binary_op);
template<class ExecutionPolicy, class InputIt, class T, class BinaryOp>
T reduce(ExecutionPolicy&& policy, (6) (parallelism TS)
InputIt first, InputIt last, T init, BinaryOp binary_op);


1) same as reduce(first, last, typename std::iterator_traits<InputIt>::value_type{})
3) same as reduce(first, last, init, std::plus<>())
5) Reduces the range [first; last), possibly permuted and aggregated in unspecified manner, along with the initial value init over binary_op.
2,4,6) Same as (1,3,5), but executed according to policy
The behavior is non-deterministic if binary_op is not associative or not commutative.
The behavior is undefined if binary_op modifies any element or invalidates any iterator in [first; last).

Parameters


first, last - the range of elements to apply the algorithm to
init - the initial value of the generalized sum
policy - the execution_policy
binary_op - binary FunctionObject that will be applied in unspecified order to the result of dereferencing the input iterators, the results of other binary_op and init.

Type requirements


-
InputIt must meet the requirements of LegacyInputIterator.

Return value


Generalized sum of init and *first, *(first+1), ... *(last-1) over binary_op,
where generalized sum GSUM(op, a
1, ..., a
N) is defined as follows:


* if N=1, a
  1
* if N > 1, op(GSUM(op, b
  1, ..., b
  K), GSUM(op, b
  M, ..., b
  N)) where


      * b
        1, ..., b
        N may be any permutation of a1, ..., aN and
      * 1 < K+1 = M ≤ N


in other words, the elements of the range may be grouped and rearranged in arbitrary order

Complexity


O(last - first) applications of binary_op.

Exceptions


* If execution of a function invoked as part of the algorithm throws an exception,


      * if policy is parallel_vector_execution_policy, std::terminate is called
      * if policy is sequential_execution_policy or parallel_execution_policy, the algorithm exits with an exception_list containing all uncaught exceptions. If there was only one uncaught exception, the algorithm may rethrow it without wrapping in exception_list. It is unspecified how much work the algorithm will perform before returning after the first exception was encountered.
      * if policy is some other type, the behavior is implementation-defined


* If the algorithm fails to allocate memory (either for itself or to construct an exception_list when handling a user exception), std::bad_alloc is thrown.

Notes


If the range is empty, init is returned, unmodified


* If policy is an instance of sequential_execution_policy, all operations are performed in the calling thread.
* If policy is an instance of parallel_execution_policy, operations may be performed in unspecified number of threads, indeterminately sequenced with each other
* If policy is an instance of parallel_vector_execution_policy, execution may be both parallelized and vectorized: function body boundaries are not respected and user code may be overlapped and combined in arbitrary manner (in particular, this implies that a user-provided Callable must not acquire a mutex to access a shared resource)

Example


reduce is the out-of-order version of std::accumulate:
// Run this code


  #include <iostream>
  #include <chrono>
  #include <vector>
  #include <numeric>
  #include <experimental/execution_policy>
  #include <experimental/numeric>


  int main()
  {
      std::vector<double> v(10'000'007, 0.5);


      {
          auto t1 = std::chrono::high_resolution_clock::now();
          double result = std::accumulate(v.begin(), v.end(), 0.0);
          auto t2 = std::chrono::high_resolution_clock::now();
          std::chrono::duration<double, std::milli> ms = t2 - t1;
          std::cout << std::fixed << "std::accumulate result " << result
                    << " took " << ms.count() << " ms\n";
      }


      {
          auto t1 = std::chrono::high_resolution_clock::now();
          double result = std::experimental::parallel::reduce(
                              std::experimental::parallel::par,
                              v.begin(), v.end());
          auto t2 = std::chrono::high_resolution_clock::now();
          std::chrono::duration<double, std::milli> ms = t2 - t1;
          std::cout << "parallel::reduce result "
                    << result << " took " << ms.count() << " ms\n";
      }
  }

Possible output:


  std::accumulate result 5000003.50000 took 12.7365 ms
  parallel::reduce result 5000003.50000 took 5.06423 ms

See also


                 sums up a range of elements
accumulate (function template)
                 applies a function to a range of elements
transform (function template)


transform_reduce applies a functor, then reduces out of order
                 (function template)
(parallelism TS)