std::cyl_bessel_k,std::cyl_bessel_kf,std::cyl_bessel_kl (3) - Linux Manuals
std::cyl_bessel_k,std::cyl_bessel_kf,std::cyl_bessel_kl: std::cyl_bessel_k,std::cyl_bessel_kf,std::cyl_bessel_kl
NAME
std::cyl_bessel_k,std::cyl_bessel_kf,std::cyl_bessel_kl - std::cyl_bessel_k,std::cyl_bessel_kf,std::cyl_bessel_kl
Synopsis
double cyl_bessel_k( double ν, double x );
float cyl_bessel_kf( float ν, float x ); (1) (since C++17)
long double cyl_bessel_kl( long double ν, long double x );
Promoted cyl_bessel_k( Arithmetic ν, Arithmetic x ); (2) (since C++17)
1) Computes the irregular_modified_cylindrical_Bessel_function (also known as modified Bessel function of the second kind) of ν and x.
2) A set of overloads or a function template for all combinations of arguments of arithmetic type not covered by (1). If any argument has integral_type, it is cast to double. If any argument is long double, then the return type Promoted is also long double, otherwise the return type is always double.
Parameters
ν- the order of the function
x - the argument of the function)
Return value
If no errors occur, value of the irregular modified cylindrical Bessel function (modified Bessel function of the second kind) of ν and x, is returned, that is K
ν(x) =
π
2
I
-ν(x)-I
ν(x)
sin(νπ)
(where I
ν(x) is std::cyl_bessel_i(ν,x)) for x≥0 and non-integer ν; for integer ν a limit is used.
Error handling
Errors may be reported as specified in math_errhandling
* If the argument is NaN, NaN is returned and domain error is not reported
* If ν>=128, the behavior is implementation-defined
Notes
Implementations that do not support C++17, but support ISO_29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1
An implementation of this function is also available_in_boost.math
Example
// Run this code
Output:
External links
Weisstein,_Eric_W._"Modified_Bessel_Function_of_the_Second_Kind." From MathWorld--A Wolfram Web Resource.
See also
cyl_bessel_i
cyl_bessel_if
cyl_bessel_il regular modified cylindrical Bessel functions
(C++17)
(C++17)
(C++17)
cyl_bessel_j
cyl_bessel_jf
cyl_bessel_jl cylindrical Bessel functions (of the first kind)
(C++17)
(C++17)
(C++17)