std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l (3) - Linux Manuals
std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l: std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l
NAME
std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l - std::comp_ellint_2,std::comp_ellint_2f,std::comp_ellint_2l
Synopsis
double comp_ellint_2( double k);
float comp_ellint_2( float k );
long double comp_ellint_2( long double k ); (1) (since C++17)
float comp_ellint_2f( float k );
long double comp_ellint_2l( long double k );
double comp_ellint_2( IntegralType k ); (2) (since C++17)
1) Computes the complete_elliptic_integral_of_the_second_kind of k.
2) A set of overloads or a function template accepting an argument of any integral_type. Equivalent to (1) after casting the argument to double.
Parameters
k - elliptic modulus or eccentricity (a value of a floating-point or integral type)
Return value
If no errors occur, value of the complete elliptic integral of the second kind of k, that is ellint_2(k,π/2), is returned.
Error handling
Errors may be reported as specified in math_errhandling
* If the argument is NaN, NaN is returned and domain error is not reported
* If |k|>1, a domain error may occur
Notes
Implementations that do not support C++17, but support ISO_29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1
An implementation of this function is also available_in_boost.math
The perimeter of an ellipse with eccentricity k and semimajor axis a equals 4aE(k), where E is std::comp_ellint_2. When eccentricity equals 0, the ellipse degenerates to a circle with radius a and the perimeter equals 2πa, so E(0) = π/2. When eccentricity equals 1, the ellipse degenerates to a line of length 2a, whose perimeter is 4a, so E(1) = 1
Example
// Run this code
Output:
External links
Weisstein,_Eric_W._"Complete_Elliptic_Integral_of_the_Second_Kind." From MathWorld--A Wolfram Web Resource.
See also
ellint_2
ellint_2f
ellint_2l (incomplete) elliptic integral of the second kind
(C++17)
(C++17)
(C++17)