std::beta,std::betaf,std::betal (3) - Linux Manuals
std::beta,std::betaf,std::betal: std::beta,std::betaf,std::betal
NAME
std::beta,std::betaf,std::betal - std::beta,std::betaf,std::betal
Synopsis
double beta( double x, double y );
float betaf( float x, float y ); (1) (since C++17)
long double betal( long double x, long double y );
Promoted beta( Arithmetic x, Arithmetic y ); (2) (since C++17)
1) Computes the beta_function of x and y.
2) A set of overloads or a function template for all combinations of arguments of arithmetic type not covered by (1). If any argument has integral_type, it is cast to double. If any argument is long double, then the return type Promoted is also long double, otherwise the return type is always double.
Parameters
x, y - values of a floating-point or integral type
Return value
If no errors occur, value of the beta function of x and y, that is ∫1
0tx-1
(1-t)(y-1)
dt, or, equivalently,
Γ(x)Γ(y)
Γ(x+y)
is returned.
Error handling
Errors may be reported as specified in math_errhandling
* If any argument is NaN, NaN is returned and domain error is not reported
* The function is only required to be defined where both x and y are greater than zero, and is allowed to report a domain error otherwise.
Notes
Implementations that do not support C++17, but support ISO_29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1
An implementation of this function is also available_in_boost.math
beta(x, y) equals beta(y, x)
When x and y are positive integers, beta(x,y) equals \(\frac{(x-1)!(y-1)!}{(x+y-1)!}\)
(x-1)!(y-1)!
(x+y-1)!
.
Binomial coefficients can be expressed in terms of the beta function: \(\binom{n}{k} = \frac{1}{(n+1)B(n-k+1,k+1)}\)⎛
⎜
⎝n
k⎞
⎟
⎠=
1
(n+1)Β(n-k+1,k+1)
Example
// Run this code
Output:
External links
Weisstein,_Eric_W._"Beta_Function." From MathWorld--A Wolfram Web Resource.