std::acosh(std::complex) (3) - Linux Manuals

std::acosh(std::complex): std::acosh(std::complex)

NAME

std::acosh(std::complex) - std::acosh(std::complex)

Synopsis


Defined in header <complex>
template< class T > (since C++11)
complex<T> acosh( const complex<T>& z );


Computes complex arc hyperbolic cosine of a complex value z with branch cut at values less than 1 along the real axis.

Parameters


z - complex value

Return value


If no errors occur, the complex arc hyperbolic cosine of z is returned, in the range of a half-strip of nonnegative values along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.


Error handling and special values


Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,


* std::acosh(std::conj(z)) == std::conj(std::acosh(z))
* If z is (±0,+0), the result is (+0,π/2)
* If z is (x,+∞) (for any finite x), the result is (+∞,π/2)
* If z is (x,NaN) (for any[1] finite x), the result is (NaN,NaN) and FE_INVALID may be raised.
* If z is (-∞,y) (for any positive finite y), the result is (+∞,π)
* If z is (+∞,y) (for any positive finite y), the result is (+∞,+0)
* If z is (-∞,+∞), the result is (+∞,3π/4)
* If z is (±∞,NaN), the result is (+∞,NaN)
* If z is (NaN,y) (for any finite y), the result is (NaN,NaN) and FE_INVALID may be raised.
* If z is (NaN,+∞), the result is (+∞,NaN)
* If z is (NaN,NaN), the result is (NaN,NaN)


  1. ↑ per C11_DR471, this holds for non-zero x only. If z is (0,NaN), the result should be (NaN,π/2)

Notes


Although the C++ standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic cosine is acosh z = ln(z +

z+1

z-1)
For any z, acosh(z) =



z-1



1-z


acos(z), or simply i acos(z) in the upper half of the complex plane.

Example


// Run this code


  #include <iostream>
  #include <complex>


  int main()
  {
      std::cout << std::fixed;
      std::complex<double> z1(0.5, 0);
      std::cout << "acosh" << z1 << " = " << std::acosh(z1) << '\n';


      std::complex<double> z2(0.5, -0.0);
      std::cout << "acosh" << z2 << " (the other side of the cut) = "
                << std::acosh(z2) << '\n';


      // in upper half-plane, acosh = i acos
      std::complex<double> z3(1, 1), i(0, 1);
      std::cout << "acosh" << z3 << " = " << std::acosh(z3) << '\n'
                << "i*acos" << z3 << " = " << i*std::acos(z3) << '\n';
  }

Output:


  acosh(0.500000,0.000000) = (0.000000,-1.047198)
  acosh(0.500000,-0.000000) (the other side of the cut) = (0.000000,1.047198)
  acosh(1.000000,1.000000) = (1.061275,0.904557)
  i*acos(1.000000,1.000000) = (1.061275,0.904557)

See also


acos(std::complex) computes arc cosine of a complex number (arccos(z))
                    (function template)
(C++11)


asinh(std::complex) computes area hyperbolic sine of a complex number
                    (function template)
(C++11)


atanh(std::complex) computes area hyperbolic tangent of a complex number
                    (function template)
(C++11)
                    computes hyperbolic cosine of a complex number (ch(z))
cosh(std::complex) (function template)


acosh
acoshf
acoshl computes the inverse hyperbolic cosine (arcosh(x))
                    (function)
(C++11)
(C++11)
(C++11)