sstevx (3) - Linux Manuals
NAME
sstevx.f -
SYNOPSIS
Functions/Subroutines
subroutine sstevx (JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)
SSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Function/Subroutine Documentation
subroutine sstevx (characterJOBZ, characterRANGE, integerN, real, dimension( * )D, real, dimension( * )E, realVL, realVU, integerIL, integerIU, realABSTOL, integerM, real, dimension( * )W, real, dimension( ldz, * )Z, integerLDZ, real, dimension( * )WORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)
SSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Purpose:
-
SSTEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
Parameters:
-
JOBZ
JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.
RANGERANGE is CHARACTER*1 = 'A': all eigenvalues will be found. = 'V': all eigenvalues in the half-open interval (VL,VU] will be found. = 'I': the IL-th through IU-th eigenvalues will be found.
NN is INTEGER The order of the matrix. N >= 0.
DD is REAL array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix A. On exit, D may be multiplied by a constant factor chosen to avoid over/underflow in computing the eigenvalues.
EE is REAL array, dimension (max(1,N-1)) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix A in elements 1 to N-1 of E. On exit, E may be multiplied by a constant factor chosen to avoid over/underflow in computing the eigenvalues.
VLVL is REAL
VUVU is REAL If RANGE='V', the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
ILIL is INTEGER
IUIU is INTEGER If RANGE='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.
ABSTOLABSTOL is REAL The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S'). See "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK Working Note #3.
MM is INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
WW is REAL array, dimension (N) The first M elements contain the selected eigenvalues in ascending order.
ZZ is REAL array, dimension (LDZ, max(1,M) ) If JOBZ = 'V', then if INFO = 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with W(i). If an eigenvector fails to converge (INFO > 0), then that column of Z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in IFAIL. If JOBZ = 'N', then Z is not referenced. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = 'V', the exact value of M is not known in advance and an upper bound must be used.
LDZLDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N).
WORKWORK is REAL array, dimension (5*N)
IWORKIWORK is INTEGER array, dimension (5*N)
IFAILIFAIL is INTEGER array, dimension (N) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvectors that failed to converge. If JOBZ = 'N', then IFAIL is not referenced.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in array IFAIL.
Author:
-
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
- November 2011
Definition at line 220 of file sstevx.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.