sc_LebedevLaikovIntegrator (3) - Linux Manuals
NAME
sc::LebedevLaikovIntegrator -
An implementation of a Lebedev angular integrator.
SYNOPSIS
#include <integrator.h>
Inherits sc::AngularIntegrator.
Public Member Functions
LebedevLaikovIntegrator (const Ref< KeyVal > &)
Construct a LebedevLaikovIntegrator using the given KeyVal input.
LebedevLaikovIntegrator (StateIn &)
LebedevLaikovIntegrator (int)
void save_data_state (StateOut &)
Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them.
int nw (void) const
int num_angular_points (double r_value, int ir)
double angular_point_cartesian (int iangular, double r, SCVector3 &integration_point) const
void print (std::ostream &=ExEnv::out0()) const
Print the object.
Protected Member Functions
Protected Attributes
int npoint_
double * x_
double * y_
double * z_
double * w_
Detailed Description
An implementation of a Lebedev angular integrator.
It uses code written by Dr. Dmitri N. Laikov.
This can generate grids with the following numbers of points: 6, 14, 26, 38, 50, 74, 86, 110, 146, 170, 194, 230, 266, 302, 350, 386, 434, 482, 530, 590, 650, 698, 770, 830, 890, 974, 1046, 1118, 1202, 1274, 1358, 1454, 1538, 1622, 1730, 1814, 1910, 2030, 2126, 2222, 2354, 2450, 2558, 2702, 2810, 2930, 3074, 3182, 3314, 3470, 3590, 3722, 3890, 4010, 4154, 4334, 4466, 4610, 4802, 4934, 5090, 5294, 5438, 5606, and 5810.
V.I. Lebedev, and D.N. Laikov 'A quadrature formula for the sphere of the 131st
V.I. Lebedev 'A quadrature formula for the sphere of 59th algebraic
V.I. Lebedev, and A.L. Skorokhodov 'Quadrature formulas of orders 41, 47, and 53 for the sphere' Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
V.I. Lebedev 'Spherical quadrature formulas exact to orders 25-29' Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
V.I. Lebedev 'Quadratures on a sphere' Computational Mathematics and Mathematical Physics, Vol. 16, 1976, pp. 10-24.
V.I. Lebedev Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion Computational Mathematics and Mathematical Physics, Vol. 15, 1975, pp. 44-51.
Construct a LebedevLaikovIntegrator using the given KeyVal input. The n keyword gives the number of angular points. The default is 302.
Save the base classes (with save_data_state) and the members in the same order that the StateIn CTOR initializes them. This must be implemented by the derived class if the class has data.
Reimplemented from sc::AngularIntegrator.
Generated automatically by Doxygen for MPQC from the source code.
Constructor & Destructor Documentation
sc::LebedevLaikovIntegrator::LebedevLaikovIntegrator (const Ref< KeyVal > &)
Member Function Documentation
void sc::LebedevLaikovIntegrator::save_data_state (StateOut &) [virtual]
Author