dsbgv (3) - Linux Manuals

NAME

dsbgv.f -

SYNOPSIS


Functions/Subroutines


subroutine dsbgv (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, INFO)
DSBGST

Function/Subroutine Documentation

subroutine dsbgv (characterJOBZ, characterUPLO, integerN, integerKA, integerKB, double precision, dimension( ldab, * )AB, integerLDAB, double precision, dimension( ldbb, * )BB, integerLDBB, double precision, dimension( * )W, double precision, dimension( ldz, * )Z, integerLDZ, double precision, dimension( * )WORK, integerINFO)

DSBGST

Purpose:

 DSBGV computes all the eigenvalues, and optionally, the eigenvectors
 of a real generalized symmetric-definite banded eigenproblem, of
 the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
 and banded, and B is also positive definite.


 

Parameters:

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.


UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.


N

          N is INTEGER
          The order of the matrices A and B.  N >= 0.


KA

          KA is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KA >= 0.


KB

          KB is INTEGER
          The number of superdiagonals of the matrix B if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'. KB >= 0.


AB

          AB is DOUBLE PRECISION array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first ka+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).

          On exit, the contents of AB are destroyed.


LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KA+1.


BB

          BB is DOUBLE PRECISION array, dimension (LDBB, N)
          On entry, the upper or lower triangle of the symmetric band
          matrix B, stored in the first kb+1 rows of the array.  The
          j-th column of B is stored in the j-th column of the array BB
          as follows:
          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).

          On exit, the factor S from the split Cholesky factorization
          B = S**T*S, as returned by DPBSTF.


LDBB

          LDBB is INTEGER
          The leading dimension of the array BB.  LDBB >= KB+1.


W

          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.


Z

          Z is DOUBLE PRECISION array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
          eigenvectors, with the i-th column of Z holding the
          eigenvector associated with W(i). The eigenvectors are
          normalized so that Z**T*B*Z = I.
          If JOBZ = 'N', then Z is not referenced.


LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= N.


WORK

          WORK is DOUBLE PRECISION array, dimension (3*N)


INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is:
             <= N:  the algorithm failed to converge:
                    i off-diagonal elements of an intermediate
                    tridiagonal form did not converge to zero;
             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
                    returned INFO = i: B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 177 of file dsbgv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.