dormrq (3) - Linux Manuals
NAME
dormrq.f -
SYNOPSIS
Functions/Subroutines
subroutine dormrq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
DORMRQ
Function/Subroutine Documentation
subroutine dormrq (characterSIDE, characterTRANS, integerM, integerN, integerK, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( ldc, * )C, integerLDC, double precision, dimension( * )WORK, integerLWORK, integerINFO)
DORMRQ
Purpose:
-
DORMRQ overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by DGERQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.
Parameters:
-
SIDE
SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
TRANSTRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T.
MM is INTEGER The number of rows of the matrix C. M >= 0.
NN is INTEGER The number of columns of the matrix C. N >= 0.
KK is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.
AA is DOUBLE PRECISION array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by DGERQF in the last k rows of its array argument A.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).
TAUTAU is DOUBLE PRECISION array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGERQF.
CC is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDCLDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORKWORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
Author:
-
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
- November 2011
Definition at line 169 of file dormrq.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.