csymv (3) - Linux Manuals

NAME

csymv.f -

SYNOPSIS


Functions/Subroutines


subroutine csymv (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CSYMV computes a matrix-vector product for a complex symmetric matrix.

Function/Subroutine Documentation

subroutine csymv (characterUPLO, integerN, complexALPHA, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )X, integerINCX, complexBETA, complex, dimension( * )Y, integerINCY)

CSYMV computes a matrix-vector product for a complex symmetric matrix.

Purpose:

 CSYMV  performs the matrix-vector  operation

    y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n symmetric matrix.


 

Parameters:

UPLO

          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the upper or lower
           triangular part of the array A is to be referenced as
           follows:

              UPLO = 'U' or 'u'   Only the upper triangular part of A
                                  is to be referenced.

              UPLO = 'L' or 'l'   Only the lower triangular part of A
                                  is to be referenced.

           Unchanged on exit.


N

          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
           Unchanged on exit.


ALPHA

          ALPHA is COMPLEX
           On entry, ALPHA specifies the scalar alpha.
           Unchanged on exit.


A

          A is COMPLEX array, dimension ( LDA, N )
           Before entry, with  UPLO = 'U' or 'u', the leading n by n
           upper triangular part of the array A must contain the upper
           triangular part of the symmetric matrix and the strictly
           lower triangular part of A is not referenced.
           Before entry, with UPLO = 'L' or 'l', the leading n by n
           lower triangular part of the array A must contain the lower
           triangular part of the symmetric matrix and the strictly
           upper triangular part of A is not referenced.
           Unchanged on exit.


LDA

          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           max( 1, N ).
           Unchanged on exit.


X

          X is COMPLEX array, dimension at least
           ( 1 + ( N - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the N-
           element vector x.
           Unchanged on exit.


INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
           Unchanged on exit.


BETA

          BETA is COMPLEX
           On entry, BETA specifies the scalar beta. When BETA is
           supplied as zero then Y need not be set on input.
           Unchanged on exit.


Y

          Y is COMPLEX array, dimension at least
           ( 1 + ( N - 1 )*abs( INCY ) ).
           Before entry, the incremented array Y must contain the n
           element vector y. On exit, Y is overwritten by the updated
           vector y.


INCY

          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
           Unchanged on exit.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Definition at line 158 of file csymv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.