cpftri (3) - Linux Manuals
NAME
cpftri.f -
SYNOPSIS
Functions/Subroutines
subroutine cpftri (TRANSR, UPLO, N, A, INFO)
CPFTRI
Function/Subroutine Documentation
subroutine cpftri (characterTRANSR, characterUPLO, integerN, complex, dimension( 0: * )A, integerINFO)
CPFTRI
Purpose:
-
CPFTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPFTRF.
Parameters:
-
TRANSR
TRANSR is CHARACTER*1 = 'N': The Normal TRANSR of RFP A is stored; = 'C': The Conjugate-transpose TRANSR of RFP A is stored.
UPLOUPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.
NN is INTEGER The order of the matrix A. N >= 0.
AA is COMPLEX array, dimension ( N*(N+1)/2 ); On entry, the Hermitian matrix A in RFP format. RFP format is described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as defined when TRANSR = 'N'. The contents of RFP A are defined by UPLO as follows: If UPLO = 'U' the RFP A contains the nt elements of upper packed A. If UPLO = 'L' the RFP A contains the elements of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N is odd. See the Note below for more details. On exit, the Hermitian inverse of the original matrix, in the same storage format.
INFOINFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
Author:
-
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
- November 2011
Further Details:
-
We first consider Standard Packed Format when N is even. We give an example where N = 6. AP is Upper AP is Lower 00 01 02 03 04 05 00 11 12 13 14 15 10 11 22 23 24 25 20 21 22 33 34 35 30 31 32 33 44 45 40 41 42 43 44 55 50 51 52 53 54 55 Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three columns of AP upper. The lower triangle A(4:6,0:2) consists of conjugate-transpose of the first three columns of AP upper. For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first three columns of AP lower. The upper triangle A(0:2,0:2) consists of conjugate-transpose of the last three columns of AP lower. To denote conjugate we place -- above the element. This covers the case N even and TRANSR = 'N'. RFP A RFP A -- -- -- 03 04 05 33 43 53 -- -- 13 14 15 00 44 54 -- 23 24 25 10 11 55 33 34 35 20 21 22 -- 00 44 45 30 31 32 -- -- 01 11 55 40 41 42 -- -- -- 02 12 22 50 51 52 Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- -- 03 13 23 33 00 01 02 33 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- -- 04 14 24 34 44 11 12 43 44 11 21 31 41 51 -- -- -- -- -- -- -- -- -- -- 05 15 25 35 45 55 22 53 54 55 22 32 42 52 We next consider Standard Packed Format when N is odd. We give an example where N = 5. AP is Upper AP is Lower 00 01 02 03 04 00 11 12 13 14 10 11 22 23 24 20 21 22 33 34 30 31 32 33 44 40 41 42 43 44 Let TRANSR = 'N'. RFP holds AP as follows: For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three columns of AP upper. The lower triangle A(3:4,0:1) consists of conjugate-transpose of the first two columns of AP upper. For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower. The upper triangle A(0:1,1:2) consists of conjugate-transpose of the last two columns of AP lower. To denote conjugate we place -- above the element. This covers the case N odd and TRANSR = 'N'. RFP A RFP A -- -- 02 03 04 00 33 43 -- 12 13 14 10 11 44 22 23 24 20 21 22 -- 00 33 34 30 31 32 -- -- 01 11 44 40 41 42 Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- transpose of RFP A above. One therefore gets: RFP A RFP A -- -- -- -- -- -- -- -- -- 02 12 22 00 01 00 10 20 30 40 50 -- -- -- -- -- -- -- -- -- 03 13 23 33 11 33 11 21 31 41 51 -- -- -- -- -- -- -- -- -- 04 14 24 34 44 43 44 22 32 42 52
Definition at line 213 of file cpftri.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.