cgeqp3 (3) - Linux Manuals
NAME
cgeqp3.f -
SYNOPSIS
Functions/Subroutines
subroutine cgeqp3 (M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, INFO)
CGEQP3
Function/Subroutine Documentation
subroutine cgeqp3 (integerM, integerN, complex, dimension( lda, * )A, integerLDA, integer, dimension( * )JPVT, complex, dimension( * )TAU, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerINFO)
CGEQP3
Purpose:
-
CGEQP3 computes a QR factorization with column pivoting of a matrix A: A*P = Q*R using Level 3 BLAS.
Parameters:
-
M
M is INTEGER The number of rows of the matrix A. M >= 0.
NN is INTEGER The number of columns of the matrix A. N >= 0.
AA is COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper trapezoidal matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(M,N) elementary reflectors.
LDALDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
JPVTJPVT is INTEGER array, dimension (N) On entry, if JPVT(J).ne.0, the J-th column of A is permuted to the front of A*P (a leading column); if JPVT(J)=0, the J-th column of A is a free column. On exit, if JPVT(J)=K, then the J-th column of A*P was the the K-th column of A.
TAUTAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors.
WORKWORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK.
LWORKLWORK is INTEGER The dimension of the array WORK. LWORK >= N+1. For optimal performance LWORK >= ( N+1 )*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
RWORKRWORK is REAL array, dimension (2*N)
INFOINFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.
Author:
-
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
- September 2012
Further Details:
-
The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a real/complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), and tau in TAU(i).
Contributors:
- G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Definition at line 159 of file cgeqp3.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.