cgbsv (3) - Linux Manuals

NAME

cgbsv.f -

SYNOPSIS


Functions/Subroutines


subroutine cgbsv (N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
CGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)

Function/Subroutine Documentation

subroutine cgbsv (integerN, integerKL, integerKU, integerNRHS, complex, dimension( ldab, * )AB, integerLDAB, integer, dimension( * )IPIV, complex, dimension( ldb, * )B, integerLDB, integerINFO)

CGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)

Purpose:

 CGBSV computes the solution to a complex system of linear equations
 A * X = B, where A is a band matrix of order N with KL subdiagonals
 and KU superdiagonals, and X and B are N-by-NRHS matrices.

 The LU decomposition with partial pivoting and row interchanges is
 used to factor A as A = L * U, where L is a product of permutation
 and unit lower triangular matrices with KL subdiagonals, and U is
 upper triangular with KL+KU superdiagonals.  The factored form of A
 is then used to solve the system of equations A * X = B.


 

Parameters:

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.


KL

          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.


KU

          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.


NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.


AB

          AB is COMPLEX array, dimension (LDAB,N)
          On entry, the matrix A in band storage, in rows KL+1 to
          2*KL+KU+1; rows 1 to KL of the array need not be set.
          The j-th column of A is stored in the j-th column of the
          array AB as follows:
          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
          On exit, details of the factorization: U is stored as an
          upper triangular band matrix with KL+KU superdiagonals in
          rows 1 to KL+KU+1, and the multipliers used during the
          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
          See below for further details.


LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.


IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices that define the permutation matrix P;
          row i of the matrix was interchanged with row IPIV(i).


B

          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.


LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).


INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
                has been completed, but the factor U is exactly
                singular, and the solution has not been computed.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:

  The band storage scheme is illustrated by the following example, when
  M = N = 6, KL = 2, KU = 1:

  On entry:                       On exit:

      *    *    *    +    +    +       *    *    *   u14  u25  u36
      *    *    +    +    +    +       *    *   u13  u24  u35  u46
      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *

  Array elements marked * are not used by the routine; elements marked
  + need not be set on entry, but are required by the routine to store
  elements of U because of fill-in resulting from the row interchanges.


 

Definition at line 163 of file cgbsv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.