cgbbrd (3) - Linux Manuals

NAME

cgbbrd.f -

SYNOPSIS


Functions/Subroutines


subroutine cgbbrd (VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO)
CGBBRD

Function/Subroutine Documentation

subroutine cgbbrd (characterVECT, integerM, integerN, integerNCC, integerKL, integerKU, complex, dimension( ldab, * )AB, integerLDAB, real, dimension( * )D, real, dimension( * )E, complex, dimension( ldq, * )Q, integerLDQ, complex, dimension( ldpt, * )PT, integerLDPT, complex, dimension( ldc, * )C, integerLDC, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO)

CGBBRD

Purpose:

 CGBBRD reduces a complex general m-by-n band matrix A to real upper
 bidiagonal form B by a unitary transformation: Q**H * A * P = B.

 The routine computes B, and optionally forms Q or P**H, or computes
 Q**H*C for a given matrix C.


 

Parameters:

VECT

          VECT is CHARACTER*1
          Specifies whether or not the matrices Q and P**H are to be
          formed.
          = 'N': do not form Q or P**H;
          = 'Q': form Q only;
          = 'P': form P**H only;
          = 'B': form both.


M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.


N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.


NCC

          NCC is INTEGER
          The number of columns of the matrix C.  NCC >= 0.


KL

          KL is INTEGER
          The number of subdiagonals of the matrix A. KL >= 0.


KU

          KU is INTEGER
          The number of superdiagonals of the matrix A. KU >= 0.


AB

          AB is COMPLEX array, dimension (LDAB,N)
          On entry, the m-by-n band matrix A, stored in rows 1 to
          KL+KU+1. The j-th column of A is stored in the j-th column of
          the array AB as follows:
          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
          On exit, A is overwritten by values generated during the
          reduction.


LDAB

          LDAB is INTEGER
          The leading dimension of the array A. LDAB >= KL+KU+1.


D

          D is REAL array, dimension (min(M,N))
          The diagonal elements of the bidiagonal matrix B.


E

          E is REAL array, dimension (min(M,N)-1)
          The superdiagonal elements of the bidiagonal matrix B.


Q

          Q is COMPLEX array, dimension (LDQ,M)
          If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
          If VECT = 'N' or 'P', the array Q is not referenced.


LDQ

          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.


PT

          PT is COMPLEX array, dimension (LDPT,N)
          If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
          If VECT = 'N' or 'Q', the array PT is not referenced.


LDPT

          LDPT is INTEGER
          The leading dimension of the array PT.
          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.


C

          C is COMPLEX array, dimension (LDC,NCC)
          On entry, an m-by-ncc matrix C.
          On exit, C is overwritten by Q**H*C.
          C is not referenced if NCC = 0.


LDC

          LDC is INTEGER
          The leading dimension of the array C.
          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.


WORK

          WORK is COMPLEX array, dimension (max(M,N))


RWORK

          RWORK is REAL array, dimension (max(M,N))


INFO

          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 193 of file cgbbrd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.