StochasticProcessArray (3) - Linux Manuals
StochasticProcessArray: Array of correlated 1-D stochastic processes
NAME
QuantLib::StochasticProcessArray - Array of correlated 1-D stochastic processes
SYNOPSIS
#include <ql/processes/stochasticprocessarray.hpp>
Inherits QuantLib::StochasticProcess.
Public Member Functions
StochasticProcessArray (const std::vector< boost::shared_ptr< StochasticProcess1D > > &, const Matrix &correlation)
Size size () const
returns the number of dimensions of the stochastic process
Disposable< Array > initialValues () const
returns the initial values of the state variables
Disposable< Array > drift (Time t, const Array &x) const
returns the drift part of the equation, i.e., $ mu(t, mathrm{x}_t) $
Disposable< Array > expectation (Time t0, const Array &x0, Time dt) const
Disposable< Matrix > diffusion (Time t, const Array &x) const
returns the diffusion part of the equation, i.e. $ igma(t, mathrm{x}_t) $
Disposable< Matrix > covariance (Time t0, const Array &x0, Time dt) const
Disposable< Matrix > stdDeviation (Time t0, const Array &x0, Time dt) const
Disposable< Array > apply (const Array &x0, const Array &dx) const
Disposable< Array > evolve (Time t0, const Array &x0, Time dt, const Array &dw) const
Time time (const Date &) const
const boost::shared_ptr< StochasticProcess1D > & process (Size i) const
Disposable< Matrix > correlation () const
Protected Attributes
std::vector< boost::shared_ptr< StochasticProcess1D > > processes_
Matrix sqrtCorrelation_
Detailed Description
Array of correlated 1-D stochastic processes
Member Function Documentation
Disposable<Array> expectation (Time t0, const Array & x0, Time dt) const [virtual]
returns the expectation $ E(mathrm{x}_{t_0 + Delta t} | mathrm{x}_{t_0} = mathrm{x}_0) $ of the process after a time interval $ Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.
Reimplemented from StochasticProcess.
Disposable<Matrix> covariance (Time t0, const Array & x0, Time dt) const [virtual]
returns the covariance $ V(mathrm{x}_{t_0 + Delta t} | mathrm{x}_{t_0} = mathrm{x}_0) $ of the process after a time interval $ Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.
Reimplemented from StochasticProcess.
Disposable<Matrix> stdDeviation (Time t0, const Array & x0, Time dt) const [virtual]
returns the standard deviation $ S(mathrm{x}_{t_0 + Delta t} | mathrm{x}_{t_0} = mathrm{x}_0) $ of the process after a time interval $ Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.
Reimplemented from StochasticProcess.
Disposable<Array> apply (const Array & x0, const Array & dx) const [virtual]
applies a change to the asset value. By default, it returns $ mathrm{x} + Delta mathrm{x} $.
Reimplemented from StochasticProcess.
Disposable<Array> evolve (Time t0, const Array & x0, Time dt, const Array & dw) const [virtual]
returns the asset value after a time interval $ Delta t $ according to the given discretization. By default, it returns [ E(mathrm{x}_0,t_0,Delta t) + S(mathrm{x}_0,t_0,Delta t) dot Delta mathrm{w} ] where $ E $ is the expectation and $ S $ the standard deviation.
Reimplemented from StochasticProcess.
Time time (const Date &) const [virtual]
returns the time value corresponding to the given date in the reference system of the stochastic process.
Note:
- As a number of processes might not need this functionality, a default implementation is given which raises an exception.
Reimplemented from StochasticProcess.
Author
Generated automatically by Doxygen for QuantLib from the source code.