DSBEVX (3) - Linux Manuals

NAME

dsbevx.f -

SYNOPSIS


Functions/Subroutines


subroutine dsbevx (JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO)
DSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Function/Subroutine Documentation

subroutine dsbevx (characterJOBZ, characterRANGE, characterUPLO, integerN, integerKD, double precision, dimension( ldab, * )AB, integerLDAB, double precision, dimension( ldq, * )Q, integerLDQ, double precisionVL, double precisionVU, integerIL, integerIU, double precisionABSTOL, integerM, double precision, dimension( * )W, double precision, dimension( ldz, * )Z, integerLDZ, double precision, dimension( * )WORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)

DSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Purpose:

 DSBEVX computes selected eigenvalues and, optionally, eigenvectors
 of a real symmetric band matrix A.  Eigenvalues and eigenvectors can
 be selected by specifying either a range of values or a range of
 indices for the desired eigenvalues.


 

Parameters:

JOBZ

          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.


RANGE

          RANGE is CHARACTER*1
          = 'A': all eigenvalues will be found;
          = 'V': all eigenvalues in the half-open interval (VL,VU]
                 will be found;
          = 'I': the IL-th through IU-th eigenvalues will be found.


UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.


N

          N is INTEGER
          The order of the matrix A.  N >= 0.


KD

          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.


AB

          AB is DOUBLE PRECISION array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

          On exit, AB is overwritten by values generated during the
          reduction to tridiagonal form.  If UPLO = 'U', the first
          superdiagonal and the diagonal of the tridiagonal matrix T
          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
          the diagonal and first subdiagonal of T are returned in the
          first two rows of AB.


LDAB

          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.


Q

          Q is DOUBLE PRECISION array, dimension (LDQ, N)
          If JOBZ = 'V', the N-by-N orthogonal matrix used in the
                         reduction to tridiagonal form.
          If JOBZ = 'N', the array Q is not referenced.


LDQ

          LDQ is INTEGER
          The leading dimension of the array Q.  If JOBZ = 'V', then
          LDQ >= max(1,N).


VL

          VL is DOUBLE PRECISION


VU

          VU is DOUBLE PRECISION
          If RANGE='V', the lower and upper bounds of the interval to
          be searched for eigenvalues. VL < VU.
          Not referenced if RANGE = 'A' or 'I'.


IL

          IL is INTEGER


IU

          IU is INTEGER
          If RANGE='I', the indices (in ascending order) of the
          smallest and largest eigenvalues to be returned.
          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
          Not referenced if RANGE = 'A' or 'V'.


ABSTOL

          ABSTOL is DOUBLE PRECISION
          The absolute error tolerance for the eigenvalues.
          An approximate eigenvalue is accepted as converged
          when it is determined to lie in an interval [a,b]
          of width less than or equal to

                  ABSTOL + EPS *   max( |a|,|b| ) ,

          where EPS is the machine precision.  If ABSTOL is less than
          or equal to zero, then  EPS*|T|  will be used in its place,
          where |T| is the 1-norm of the tridiagonal matrix obtained
          by reducing AB to tridiagonal form.

          Eigenvalues will be computed most accurately when ABSTOL is
          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
          If this routine returns with INFO>0, indicating that some
          eigenvectors did not converge, try setting ABSTOL to
          2*DLAMCH('S').

          See "Computing Small Singular Values of Bidiagonal Matrices
          with Guaranteed High Relative Accuracy," by Demmel and
          Kahan, LAPACK Working Note #3.


M

          M is INTEGER
          The total number of eigenvalues found.  0 <= M <= N.
          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.


W

          W is DOUBLE PRECISION array, dimension (N)
          The first M elements contain the selected eigenvalues in
          ascending order.


Z

          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
          contain the orthonormal eigenvectors of the matrix A
          corresponding to the selected eigenvalues, with the i-th
          column of Z holding the eigenvector associated with W(i).
          If an eigenvector fails to converge, then that column of Z
          contains the latest approximation to the eigenvector, and the
          index of the eigenvector is returned in IFAIL.
          If JOBZ = 'N', then Z is not referenced.
          Note: the user must ensure that at least max(1,M) columns are
          supplied in the array Z; if RANGE = 'V', the exact value of M
          is not known in advance and an upper bound must be used.


LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).


WORK

          WORK is DOUBLE PRECISION array, dimension (7*N)


IWORK

          IWORK is INTEGER array, dimension (5*N)


IFAIL

          IFAIL is INTEGER array, dimension (N)
          If JOBZ = 'V', then if INFO = 0, the first M elements of
          IFAIL are zero.  If INFO > 0, then IFAIL contains the
          indices of the eigenvectors that failed to converge.
          If JOBZ = 'N', then IFAIL is not referenced.


INFO

          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, then i eigenvectors failed to converge.
                Their indices are stored in array IFAIL.


 

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 257 of file dsbevx.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.