fcntl (2) - Linux Manuals
fcntl: manipulate file descriptor
NAME
fcntl - manipulate file descriptor
SYNOPSIS
#include <unistd.h> #include <fcntl.h> int fcntl(int fd, int cmd, ... /* arg */ );
DESCRIPTION
fcntl() performs one of the operations described below on the open file descriptor fd. The operation is determined by cmd.fcntl() can take an optional third argument. Whether or not this argument is required is determined by cmd. The required argument type is indicated in parentheses after each cmd name (in most cases, the required type is int, and we identify the argument using the name arg), or void is specified if the argument is not required.
Certain of the operations below are supported only since a particular Linux kernel version. The preferred method of checking whether the host kernel supports a particular operation is to invoke fcntl() with the desired cmd value and then test whether the call failed with EINVAL, indicating that the kernel does not recognize this value.
Duplicating a file descriptor
- F_DUPFD (int)
- Duplicate the file descriptor fd using the lowest-numbered available file descriptor greater than or equal to arg. This is different from dup2(2), which uses exactly the file descriptor specified.
- On success, the new file descriptor is returned.
- See dup(2) for further details.
- F_DUPFD_CLOEXEC (int; since Linux 2.6.24)
- As for F_DUPFD, but additionally set the close-on-exec flag for the duplicate file descriptor. Specifying this flag permits a program to avoid an additional fcntl() F_SETFD operation to set the FD_CLOEXEC flag. For an explanation of why this flag is useful, see the description of O_CLOEXEC in open(2).
File descriptor flags
The following commands manipulate the flags associated with a file descriptor. Currently, only one such flag is defined: FD_CLOEXEC, the close-on-exec flag. If the FD_CLOEXEC bit is set, the file descriptor will automatically be closed during a successful execve(2). (If the execve(2) fails, the file descriptor is left open.) If the FD_CLOEXEC bit is not set, the file descriptor will remain open across an execve(2).- F_GETFD (void)
- Return (as the function result) the file descriptor flags; arg is ignored.
- F_SETFD (int)
- Set the file descriptor flags to the value specified by arg.
In multithreaded programs, using fcntl() F_SETFD to set the close-on-exec flag at the same time as another thread performs a fork(2) plus execve(2) is vulnerable to a race condition that may unintentionally leak the file descriptor to the program executed in the child process. See the discussion of the O_CLOEXEC flag in open(2) for details and a remedy to the problem.
File status flags
Each open file description has certain associated status flags, initialized by open(2) and possibly modified by fcntl(). Duplicated file descriptors (made with dup(2), fcntl(F_DUPFD), fork(2), etc.) refer to the same open file description, and thus share the same file status flags.The file status flags and their semantics are described in open(2).
- F_GETFL (void)
- Return (as the function result) the file access mode and the file status flags; arg is ignored.
- F_SETFL (int)
- Set the file status flags to the value specified by arg. File access mode (O_RDONLY, O_WRONLY, O_RDWR) and file creation flags (i.e., O_CREAT, O_EXCL, O_NOCTTY, O_TRUNC) in arg are ignored. On Linux, this command can change only the O_APPEND, O_ASYNC, O_DIRECT, O_NOATIME, and O_NONBLOCK flags. It is not possible to change the O_DSYNC and O_SYNC flags; see BUGS, below.
Advisory record locking
Linux implements traditional ("process-associated") UNIX record locks, as standardized by POSIX. For a Linux-specific alternative with better semantics, see the discussion of open file description locks below.F_SETLK, F_SETLKW, and F_GETLK are used to acquire, release, and test for the existence of record locks (also known as byte-range, file-segment, or file-region locks). The third argument, lock, is a pointer to a structure that has at least the following fields (in unspecified order).
struct flock {
The
l_whence, l_start, and l_len
fields of this structure specify the range of bytes we wish to lock.
Bytes past the end of the file may be locked,
but not bytes before the start of the file.
l_start
is the starting offset for the lock, and is interpreted
relative to either:
the start of the file (if
l_whence
is
SEEK_SET);
the current file offset (if
l_whence
is
SEEK_CUR);
or the end of the file (if
l_whence
is
SEEK_END).
In the final two cases,
l_start
can be a negative number provided the
offset does not lie before the start of the file.
l_len
specifies the number of bytes to be locked.
If
l_len
is positive, then the range to be locked covers bytes
l_start
up to and including
l_start+l_len-1.
Specifying 0 for
l_len
has the special meaning: lock all bytes starting at the
location specified by
l_whence and l_start
through to the end of file, no matter how large the file grows.
POSIX.1-2001 allows (but does not require)
an implementation to support a negative
l_len
value; if
l_len
is negative, the interval described by
lock
covers bytes
l_start+l_len
up to and including
l_start-1.
This is supported by Linux since kernel versions 2.4.21 and 2.5.49.
The
l_type
field can be used to place a read
(F_RDLCK)
or a write
(F_WRLCK)
lock on a file.
Any number of processes may hold a read lock (shared lock)
on a file region, but only one process may hold a write lock
(exclusive lock).
An exclusive lock excludes all other locks,
both shared and exclusive.
A single process can hold only one type of lock on a file region;
if a new lock is applied to an already-locked region,
then the existing lock is converted to the new lock type.
(Such conversions may involve splitting, shrinking, or coalescing with
an existing lock if the byte range specified by the new lock does not
precisely coincide with the range of the existing lock.)
In order to place a read lock,
fd
must be open for reading.
In order to place a write lock,
fd
must be open for writing.
To place both types of lock, open a file read-write.
When placing locks with
F_SETLKW,
the kernel detects
deadlocks,
whereby two or more processes have their
lock requests mutually blocked by locks held by the other processes.
For example, suppose process A holds a write lock on byte 100 of a file,
and process B holds a write lock on byte 200.
If each process then attempts to lock the byte already
locked by the other process using
F_SETLKW,
then, without deadlock detection,
both processes would remain blocked indefinitely.
When the kernel detects such deadlocks,
it causes one of the blocking lock requests to immediately fail with the error
EDEADLK;
an application that encounters such an error should release
some of its locks to allow other applications to proceed before
attempting regain the locks that it requires.
Circular deadlocks involving more than two processes are also detected.
Note, however, that there are limitations to the kernel's
deadlock-detection algorithm; see BUGS.
As well as being removed by an explicit
F_UNLCK,
record locks are automatically released when the process terminates.
Record locks are not inherited by a child created via
fork(2),
but are preserved across an
execve(2).
Because of the buffering performed by the
stdio(3)
library, the use of record locking with routines in that package
should be avoided; use
read(2)
and
write(2)
instead.
The record locks described above are associated with the process
(unlike the open file description locks described below).
This has some unfortunate consequences:
Open file description locks solve both of these problems.
The principal difference between the two lock types
is that whereas traditional record locks
are associated with a process,
open file description locks are associated with the
open file description on which they are acquired,
much like locks acquired with
flock(2).
Consequently (and unlike traditional advisory record locks),
open file description locks are inherited across
fork(2)
(and
clone(2)
with
CLONE_FILES),
and are only automatically released on the last close
of the open file description,
instead of being released on any close of the file.
Conflicting lock combinations
(i.e., a read lock and a write lock or two write locks)
where one lock is an open file description lock and the other
is a traditional record lock conflict
even when they are acquired by the same process on the same file descriptor.
Open file description locks placed via the same open file description
(i.e., via the same file descriptor,
or via a duplicate of the file descriptor created by
fork(2),
dup(2),
fcntl()
F_DUPFD,
and so on) are always compatible:
if a new lock is placed on an already locked region,
then the existing lock is converted to the new lock type.
(Such conversions may result in splitting, shrinking, or coalescing with
an existing lock as discussed above.)
On the other hand, open file description locks may conflict with
each other when they are acquired via different open file descriptions.
Thus, the threads in a multithreaded program can use
open file description locks to synchronize access to a file region
by having each thread perform its own
open(2)
on the file and applying locks via the resulting file descriptor.
As with traditional advisory locks, the third argument to
fcntl(),
lock,
is a pointer to an
flock
structure.
By contrast with traditional record locks, the
l_pid
field of that structure must be set to zero
when using the commands described below.
The commands for working with open file description locks are analogous
to those used with traditional locks:
In the current implementation,
no deadlock detection is performed for open file description locks.
(This contrasts with process-associated record locks,
for which the kernel does perform deadlock detection.)
By default, both traditional (process-associated) and open file description
record locks are advisory.
Advisory locks are not enforced and are useful only between
cooperating processes.
Both lock types can also be mandatory.
Mandatory locks are enforced for all processes.
If a process tries to perform an incompatible access (e.g.,
read(2)
or
write(2))
on a file region that has an incompatible mandatory lock,
then the result depends upon whether the
O_NONBLOCK
flag is enabled for its open file description.
If the
O_NONBLOCK
flag is not enabled, then
the system call is blocked until the lock is removed
or converted to a mode that is compatible with the access.
If the
O_NONBLOCK
flag is enabled, then the system call fails with the error
EAGAIN.
To make use of mandatory locks, mandatory locking must be enabled
both on the filesystem that contains the file to be locked,
and on the file itself.
Mandatory locking is enabled on a filesystem
using the "-o mand" option to
mount(8),
or the
MS_MANDLOCK
flag for
mount(2).
Mandatory locking is enabled on a file by disabling
group execute permission on the file and enabling the set-group-ID
permission bit (see
chmod(1)
and
chmod(2)).
Mandatory locking is not specified by POSIX.
Some other systems also support mandatory locking,
although the details of how to enable it vary across systems.
When the filesystem determines that a lock has been lost, future
read(2)
or
write(2)
requests may fail with the error
EIO.
This error will persist until the lock is removed or the file
descriptor is closed.
Since Linux 3.12,
this happens at least for NFSv4 (including all minor versions).
Some versions of UNIX send a signal
(SIGLOST)
in this circumstance.
Linux does not define this signal, and does not provide any
asynchronous notification of lost locks.
Using these mechanisms, a program can implement fully asynchronous I/O
without using
select(2)
or
poll(2)
most of the time.
The use of
O_ASYNC
is specific to BSD and Linux.
The only use of
F_GETOWN
and
F_SETOWN
specified in POSIX.1 is in conjunction with the use of the
SIGURG
signal on sockets.
(POSIX does not specify the
SIGIO
signal.)
F_GETOWN_EX,
F_SETOWN_EX,
F_GETSIG,
and
F_SETSIG
are Linux-specific.
POSIX has asynchronous I/O and the
aio_sigevent
structure to achieve similar things; these are also available
in Linux as part of the GNU C Library (Glibc).
Leases are associated with an open file description (see
open(2)).
This means that duplicate file descriptors (created by, for example,
fork(2)
or
dup(2))
refer to the same lease, and this lease may be modified
or released using any of these descriptors.
Furthermore, the lease is released by either an explicit
F_UNLCK
operation on any of these duplicate file descriptors, or when all
such file descriptors have been closed.
Leases may be taken out only on regular files.
An unprivileged process may take out a lease only on a file whose
UID (owner) matches the filesystem UID of the process.
A process with the
CAP_LEASE
capability may take out leases on arbitrary files.
When a process (the "lease breaker") performs an
open(2)
or
truncate(2)
that conflicts with a lease established via
F_SETLEASE,
the system call is blocked by the kernel and
the kernel notifies the lease holder by sending it a signal
(SIGIO
by default).
The lease holder should respond to receipt of this signal by doing
whatever cleanup is required in preparation for the file to be
accessed by another process (e.g., flushing cached buffers) and
then either remove or downgrade its lease.
A lease is removed by performing an
F_SETLEASE
command specifying
arg
as
F_UNLCK.
If the lease holder currently holds a write lease on the file,
and the lease breaker is opening the file for reading,
then it is sufficient for the lease holder to downgrade
the lease to a read lease.
This is done by performing an
F_SETLEASE
command specifying
arg
as
F_RDLCK.
If the lease holder fails to downgrade or remove the lease within
the number of seconds specified in
/proc/sys/fs/lease-break-time,
then the kernel forcibly removes or downgrades the lease holder's lease.
Once a lease break has been initiated,
F_GETLEASE
returns the target lease type (either
F_RDLCK
or
F_UNLCK,
depending on what would be compatible with the lease breaker)
until the lease holder voluntarily downgrades or removes the lease or
the kernel forcibly does so after the lease break timer expires.
Once the lease has been voluntarily or forcibly removed or downgraded,
and assuming the lease breaker has not unblocked its system call,
the kernel permits the lease breaker's system call to proceed.
If the lease breaker's blocked
open(2)
or
truncate(2)
is interrupted by a signal handler,
then the system call fails with the error
EINTR,
but the other steps still occur as described above.
If the lease breaker is killed by a signal while blocked in
open(2)
or
truncate(2),
then the other steps still occur as described above.
If the lease breaker specifies the
O_NONBLOCK
flag when calling
open(2),
then the call immediately fails with the error
EWOULDBLOCK,
but the other steps still occur as described above.
The default signal used to notify the lease holder is
SIGIO,
but this can be changed using the
F_SETSIG
command to
fcntl().
If a
F_SETSIG
command is performed (even one specifying
SIGIO),
and the signal
handler is established using
SA_SIGINFO,
then the handler will receive a
siginfo_t
structure as its second argument, and the
si_fd
field of this argument will hold the file descriptor of the leased file
that has been accessed by another process.
(This is useful if the caller holds leases against multiple files.)
Currently,
file seals can be applied only to a file descriptor returned by
memfd_create(2)
(if the
MFD_ALLOW_SEALING
was employed).
On other filesystems, all
fcntl()
operations that operate on seals will return
EINVAL.
Seals are a property of an inode.
Thus, all open file descriptors referring to the same inode share
the same set of seals.
Furthermore, seals can never be removed, only added.
The following seals are available:
An application may use the different hint values specified below to
separate writes into different write classes,
so that multiple users or applications running on a single storage back-end
can aggregate their I/O patterns in a consistent manner.
However, there are no functional semantics implied by these flags,
and different I/O classes can use the write lifetime hints
in arbitrary ways, so long as the hints are used consistently.
The following operations can be applied to the file descriptor,
fd:
If an open file description has not been assigned a read/write hint,
then it shall use the value assigned to the inode, if any.
The following read/write
hints are valid since Linux 4.13:
All the write-specific hints are relative to each other,
and no individual absolute meaning should be attributed to them.
On error, -1 is returned, and
errno
is set appropriately.
F_GETOWN
and
F_SETOWN
are specified in POSIX.1-2001.
(To get their definitions, define either
_XOPEN_SOURCE
with the value 500 or greater, or
_POSIX_C_SOURCE
with the value 200809L or greater.)
F_DUPFD_CLOEXEC
is specified in POSIX.1-2008.
(To get this definition, define
_POSIX_C_SOURCE
with the value 200809L or greater, or
_XOPEN_SOURCE
with the value 700 or greater.)
F_GETOWN_EX,
F_SETOWN_EX,
F_SETPIPE_SZ,
F_GETPIPE_SZ,
F_GETSIG,
F_SETSIG,
F_NOTIFY,
F_GETLEASE,
and
F_SETLEASE
are Linux-specific.
(Define the
_GNU_SOURCE
macro to obtain these definitions.)
F_OFD_SETLK,
F_OFD_SETLKW,
and
F_OFD_GETLK
are Linux-specific (and one must define
_GNU_SOURCE
to obtain their definitions),
but work is being done to have them included in the next version of POSIX.1.
F_ADD_SEALS
and
F_GET_SEALS
are Linux-specific.
Several systems have more fields in
struct flock
such as, for example,
l_sysid
(to identify the machine where the lock is held).
Clearly,
l_pid
alone is not going to be very useful if the process holding the lock
may live on a different machine;
on Linux, while present on some architectures (such as MIPS32),
this field is not used.
The original Linux
fcntl()
system call was not designed to handle large file offsets
(in the
flock
structure).
Consequently, an
fcntl64()
system call was added in Linux 2.4.
The newer system call employs a different structure for file locking,
flock64,
and corresponding commands,
F_GETLK64,
F_SETLK64,
and
F_SETLKW64.
However, these details can be ignored by applications using glibc, whose
fcntl()
wrapper function transparently employs the more recent system call
where it is available.
Since Linux 3.12,
if an NFSv4 client loses contact with the server,
any I/O to the file by a process which "thinks" it holds
a lock will fail until that process closes and reopens the file.
A kernel parameter,
nfs.recover_lost_locks,
can be set to 1 to obtain the pre-3.12 behavior,
whereby the client will attempt to recover lost locks
when contact is reestablished with the server.
Because of the attendant risk of data corruption,
this parameter defaults to 0 (disabled).
locks.txt,
mandatory-locking.txt,
and
dnotify.txt
in the Linux kernel source directory
Documentation/filesystems/
(on older kernels, these files are directly under the
Documentation/
directory, and
mandatory-locking.txt
is called
mandatory.txt)
Open file description locks (non-POSIX)
Open file description locks are advisory byte-range locks whose operation is
in most respects identical to the traditional record locks described above.
This lock type is Linux-specific,
and available since Linux 3.15.
(There is a proposal with the Austin Group
to include this lock type in the next revision of POSIX.1.)
For an explanation of open file descriptions, see
open(2).
Mandatory locking
Warning:
the Linux implementation of mandatory locking is unreliable.
See BUGS below.
Because of these bugs,
and the fact that the feature is believed to be little used,
since Linux 4.5, mandatory locking has been made an optional feature,
governed by a configuration option
(CONFIG_MANDATORY_FILE_LOCKING).
This is an initial step toward removing this feature completely.
Lost locks
When an advisory lock is obtained on a networked filesystem such as
NFS it is possible that the lock might get lost.
This may happen due to administrative action on the server, or due to a
network partition (i.e., loss of network connectivity with the server)
which lasts long enough for the server to assume
that the client is no longer functioning.
Managing signals
F_GETOWN,
F_SETOWN,
F_GETOWN_EX,
F_SETOWN_EX,
F_GETSIG,
and
F_SETSIG
are used to manage I/O availability signals:
Leases
F_SETLEASE
and
F_GETLEASE
(Linux 2.4 onward) are used to establish a new lease,
and retrieve the current lease, on the open file description
referred to by the file descriptor
fd.
A file lease provides a mechanism whereby the process holding
the lease (the "lease holder") is notified (via delivery of a signal)
when a process (the "lease breaker") tries to
open(2)
or
truncate(2)
the file referred to by that file descriptor.
File and directory change notification (dnotify)
Changing the capacity of a pipe
File Sealing
File seals limit the set of allowed operations on a given file.
For each seal that is set on a file,
a specific set of operations will fail with
EPERM
on this file from now on.
The file is said to be sealed.
The default set of seals depends on the type of the underlying
file and filesystem.
For an overview of file sealing, a discussion of its purpose,
and some code examples, see
memfd_create(2).
File read/write hints
Write lifetime hints can be used to inform the kernel about the relative
expected lifetime of writes on a given inode or
via a particular open file description.
(See
open(2)
for an explanation of open file descriptions.)
In this context, the term "write lifetime" means
the expected time the data will live on media, before
being overwritten or erased.
RETURN VALUE
For a successful call, the return value depends on the operation:
ERRORS
CONFORMING TO
SVr4, 4.3BSD, POSIX.1-2001.
Only the operations
F_DUPFD,
F_GETFD,
F_SETFD,
F_GETFL,
F_SETFL,
F_GETLK,
F_SETLK,
and
F_SETLKW
are specified in POSIX.1-2001.
NOTES
The errors returned by
dup2(2)
are different from those returned by
F_DUPFD.
File locking
The original Linux
fcntl()
system call was not designed to handle large file offsets
(in the
flock
structure).
Consequently, an
fcntl64()
system call was added in Linux 2.4.
The newer system call employs a different structure for file locking,
flock64,
and corresponding commands,
F_GETLK64,
F_SETLK64,
and
F_SETLKW64.
However, these details can be ignored by applications using glibc, whose
fcntl()
wrapper function transparently employs the more recent system call
where it is available.
Record locks
Since kernel 2.0, there is no interaction between the types of lock
placed by
flock(2)
and
fcntl().
Record locking and NFS
Before Linux 3.12, if an NFSv4 client
loses contact with the server for a period of time
(defined as more than 90 seconds with no communication),
it might lose and regain a lock without ever being aware of the fact.
(The period of time after which contact is assumed lost is known as
the NFSv4 leasetime.
On a Linux NFS server, this can be determined by looking at
/proc/fs/nfsd/nfsv4leasetime,
which expresses the period in seconds.
The default value for this file is 90.)
This scenario potentially risks data corruption,
since another process might acquire a lock in the intervening period
and perform file I/O.
BUGS
F_SETFL
It is not possible to use
F_SETFL
to change the state of the
O_DSYNC
and
O_SYNC
flags.
Attempts to change the state of these flags are silently ignored.
F_GETOWN
A limitation of the Linux system call conventions on some
architectures (notably i386) means that if a (negative)
process group ID to be returned by
F_GETOWN
falls in the range -1 to -4095, then the return value is wrongly
interpreted by glibc as an error in the system call;
that is, the return value of
fcntl()
will be -1, and
errno
will contain the (positive) process group ID.
The Linux-specific
F_GETOWN_EX
operation avoids this problem.
Since glibc version 2.11, glibc makes the kernel
F_GETOWN
problem invisible by implementing
F_GETOWN
using
F_GETOWN_EX.
F_SETOWN
In Linux 2.4 and earlier, there is bug that can occur
when an unprivileged process uses
F_SETOWN
to specify the owner
of a socket file descriptor
as a process (group) other than the caller.
In this case,
fcntl()
can return -1 with
errno
set to
EPERM,
even when the owner process (group) is one that the caller
has permission to send signals to.
Despite this error return, the file descriptor owner is set,
and signals will be sent to the owner.
Deadlock detection
The deadlock-detection algorithm employed by the kernel when dealing with
F_SETLKW
requests can yield both
false negatives (failures to detect deadlocks,
leaving a set of deadlocked processes blocked indefinitely)
and false positives
(EDEADLK
errors when there is no deadlock).
For example,
the kernel limits the lock depth of its dependency search to 10 steps,
meaning that circular deadlock chains that exceed
that size will not be detected.
In addition, the kernel may falsely indicate a deadlock
when two or more processes created using the
clone(2)
CLONE_FILES
flag place locks that appear (to the kernel) to conflict.
Mandatory locking
The Linux implementation of mandatory locking
is subject to race conditions which render it unreliable:
a
write(2)
call that overlaps with a lock may modify data after the mandatory lock is
acquired;
a
read(2)
call that overlaps with a lock may detect changes to data that were made
only after a write lock was acquired.
Similar races exist between mandatory locks and
mmap(2).
It is therefore inadvisable to rely on mandatory locking.
COLOPHON
This page is part of release 5.10 of the Linux
man-pages
project.
A description of the project,
information about reporting bugs,
and the latest version of this page,
can be found at
https://www.kernel.org/doc/man-pages/.
SEE ALSO
dup2(2),
flock(2),
open(2),
socket(2),
lockf(3),
capabilities(7),
feature_test_macros(7),
lslocks(8)