rawshark (1) - Linux Manuals
rawshark: Dump and analyze raw pcap data
NAME
rawshark - Dump and analyze raw pcap data
SYNOPSIS
rawshark [DESCRIPTION
Rawshark reads a stream of packets from a file or pipe, and prints a line describing its output, followed by a set of matching fields for each packet on stdout.INPUT
Unlike TShark, Rawshark makes no assumptions about encapsulation or input. The -d and -r flags must be specified in order for it to run. One or more -F flags should be specified in order for the output to be useful. The other flags listed above follow the same conventions as Wireshark and TShark.Rawshark expects input records with the following format by default. This matches the format of the packet header and packet data in a pcap-formatted file on disk.
struct rawshark_rec_s { uint32_t ts_sec; /* Time stamp (seconds) */ uint32_t ts_usec; /* Time stamp (microseconds) */ uint32_t caplen; /* Length of the packet buffer */ uint32_t len; /* "On the wire" length of the packet */ uint8_t data[caplen]; /* Packet data */ };
If -p is supplied rawshark expects the following format. This matches the struct pcap_pkthdr structure and packet data used in libpcap/WinPcap. This structure's format is platform-dependent; the size of the tv_sec field in the struct timeval structure could be 32 bits or 64 bits. For rawshark to work, the layout of the structure in the input must match the layout of the structure in rawshark. Note that this format will probably be the same as the previous format if rawshark is a 32-bit program, but will not necessarily be the same if rawshark is a 64-bit program.
struct rawshark_rec_s { struct timeval ts; /* Time stamp */ uint32_t caplen; /* Length of the packet buffer */ uint32_t len; /* "On the wire" length of the packet */ uint8_t data[caplen]; /* Packet data */ };
In either case, the endianness (byte ordering) of each integer must match the system on which rawshark is running.
OUTPUT
If one or more fields are specified via the -F flag, Rawshark prints the number, field type, and display format for each field on the first line as ``packet number'' 0. For each record, the packet number, matching fields, and a ``1'' or ``0'' are printed to indicate if the field matched any supplied display filter. A ``-'' is used to signal the end of a field description and at the end of each packet line. For example, the flags -F ip.src -F dns.qry.type might generate the following output:
0 FT_IPv4 BASE_NONE - 1 FT_UINT16 BASE_HEX - 1 1="1" 0="192.168.77.10" 1 - 2 1="1" 0="192.168.77.250" 1 - 3 0="192.168.77.10" 1 - 4 0="74.125.19.104" 1 -
Note that packets 1 and 2 are DNS queries, and 3 and 4 are not. Adding -R ``not dns'' still prints each line, but there's an indication that packets 1 and 2 didn't pass the filter:
0 FT_IPv4 BASE_NONE - 1 FT_UINT16 BASE_HEX - 1 1="1" 0="192.168.77.10" 0 - 2 1="1" 0="192.168.77.250" 0 - 3 0="192.168.77.10" 1 - 4 0="74.125.19.104" 1 -
Also note that the output may be in any order, and that multiple matching fields might be displayed.
OPTIONS
- -d <encapsulation>
-
Specify how the packet data should be dissected. The encapsulation is of the
form type:value, where type is one of:
encap:name Packet data should be dissected using the libpcap/WinPcap data link type (DLT) name, e.g. encap:EN10MB for Ethernet. Names are converted using pcap_datalink_name_to_val(). A complete list of DLTs can be found at <http://www.tcpdump.org/linktypes.html>.
encap:number Packet data should be dissected using the libpcap/WinPcap DLT number, e.g. encap:105 for raw IEEE 802.11.
proto:protocol Packet data should be passed to the specified Wireshark protocol dissector, e.g. proto:http for HTTP data.
- -F <field to display>
- Add the matching field to the output. Fields are any valid display filter field. More than one -F flag may be specified, and each field can match multiple times in a given packet. A single field may be specified per -F flag. If you want to apply a display filter, use the -R flag.
- -h
- Print the version and options and exits.
- -l
-
Flush the standard output after the information for each packet is
printed. (This is not, strictly speaking, line-buffered if -V
was specified; however, it is the same as line-buffered if -V wasn't
specified, as only one line is printed for each packet, and, as -l is
normally used when piping a live capture to a program or script, so that
output for a packet shows up as soon as the packet is seen and
dissected, it should work just as well as true line-buffering. We do
this as a workaround for a deficiency in the Microsoft Visual C++ C
library.)
This may be useful when piping the output of TShark to another program, as it means that the program to which the output is piped will see the dissected data for a packet as soon as TShark sees the packet and generates that output, rather than seeing it only when the standard output buffer containing that data fills up.
- -n
- Disable network object name resolution (such as hostname, TCP and UDP port names), the -N flag might override this one.
- -N <name resolving flags>
-
Turn on name resolving only for particular types of addresses and port
numbers, with name resolving for other types of addresses and port
numbers turned off. This flag overrides -n if both -N and -n are
present. If both -N and -n flags are not present, all name resolutions are
turned on.
The argument is a string that may contain the letters:
m to enable MAC address resolution
n to enable network address resolution
N to enable using external resolvers (e.g., DNS) for network address resolution
t to enable transport-layer port number resolution
C to enable concurrent (asynchronous) DNS lookups
- -o <preference>:<value>
- Set a preference value, overriding the default value and any value read from a preference file. The argument to the option is a string of the form prefname:value, where prefname is the name of the preference (which is the same name that would appear in the preference file), and value is the value to which it should be set.
- -p
- Assume that packet data is preceded by a pcap_pkthdr struct as defined in pcap.h. On some systems the size of the timestamp data will be different from the data written to disk. On other systems they are identical and this flag has no effect.
- -r <pipe>|-
- Read packet data from input source. It can be either the name of a FIFO (named pipe) or ``-'' to read data from the standard input, and must have the record format specified above.
- -R <read (display) filter>
- Cause the specified filter (which uses the syntax of read/display filters, rather than that of capture filters) to be applied before printing the output.
- -s
- Allows standard pcap files to be used as input, by skipping over the 24 byte pcap file header.
- -S
-
Use the specified format string to print each field. The following formats
are supported:
%D Field name or description, e.g. ``Type'' for dns.qry.type
%N Base 10 numeric value of the field.
%S String value of the field.
For something similar to Wireshark's standard display (``Type: A (1)'') you could use %D:%S (%N).
- -t ad|a|r|d|e
-
Set the format of the packet timestamp printed in summary lines, the default
is relative. The format can be one of:
ad absolute with date: The absolute date and time is the actual time and date the packet was captured
a absolute: The absolute time is the actual time the packet was captured, with no date displayed
r relative: The relative time is the time elapsed between the first packet and the current packet
d delta: The delta time is the time since the previous packet was captured
e epoch: The time in seconds since epoch (Jan 1, 1970 00:00:00)
- -v
- Print the version and exit.
READ FILTER SYNTAX
For a complete table of protocol and protocol fields that are filterable in TShark see the wireshark-filter(4) manual page.FILES
These files contains various Wireshark configuration values.- Preferences
-
The preferences files contain global (system-wide) and personal
preference settings. If the system-wide preference file exists, it is
read first, overriding the default settings. If the personal preferences
file exists, it is read next, overriding any previous values. Note: If
the command line option -o is used (possibly more than once), it will
in turn override values from the preferences files.
The preferences settings are in the form prefname:value, one per line, where prefname is the name of the preference and value is the value to which it should be set; white space is allowed between : and value. A preference setting can be continued on subsequent lines by indenting the continuation lines with white space. A # character starts a comment that runs to the end of the line:
# Capture in promiscuous mode? # TRUE or FALSE (case-insensitive). capture.prom_mode: TRUE
The global preferences file is looked for in the wireshark directory under the share subdirectory of the main installation directory (for example, /usr/local/share/wireshark/preferences) on UNIX-compatible systems, and in the main installation directory (for example, C:\Program Files\Wireshark\preferences) on Windows systems.
The personal preferences file is looked for in $HOME/.wireshark/preferences on UNIX-compatible systems and %APPDATA%\Wireshark\preferences (or, if %APPDATA% isn't defined, %USERPROFILE%\Application Data\Wireshark\preferences) on Windows systems.
- Disabled (Enabled) Protocols
-
The disabled_protos files contain system-wide and personal lists of
protocols that have been disabled, so that their dissectors are never
called. The files contain protocol names, one per line, where the
protocol name is the same name that would be used in a display filter
for the protocol:
http tcp # a comment
The global disabled_protos file uses the same directory as the global preferences file.
The personal disabled_protos file uses the same directory as the personal preferences file.
- Name Resolution (hosts)
-
If the personal hosts file exists, it is
used to resolve IPv4 and IPv6 addresses before any other
attempts are made to resolve them. The file has the standard hosts
file syntax; each line contains one IP address and name, separated by
whitespace. The same directory as for the personal preferences file is
used.
Capture filter name resolution is handled by libpcap on UNIX-compatible systems and WinPcap on Windows. As such the Wireshark personal hosts file will not be consulted for capture filter name resolution.
- Name Resolution (ethers)
-
The ethers files are consulted to correlate 6-byte hardware addresses to
names. First the personal ethers file is tried and if an address is not
found there the global ethers file is tried next.
Each line contains one hardware address and name, separated by whitespace. The digits of the hardware address are separated by colons (:), dashes (-) or periods (.). The same separator character must be used consistently in an address. The following three lines are valid lines of an ethers file:
ff:ff:ff:ff:ff:ff Broadcast c0-00-ff-ff-ff-ff TR_broadcast 00.00.00.00.00.00 Zero_broadcast
The global ethers file is looked for in the /etc directory on UNIX-compatible systems, and in the main installation directory (for example, C:\Program Files\Wireshark) on Windows systems.
The personal ethers file is looked for in the same directory as the personal preferences file.
Capture filter name resolution is handled by libpcap on UNIX-compatible systems and WinPcap on Windows. As such the Wireshark personal ethers file will not be consulted for capture filter name resolution.
- Name Resolution (manuf)
-
The manuf file is used to match the 3-byte vendor portion of a 6-byte
hardware address with the manufacturer's name; it can also contain well-known
MAC addresses and address ranges specified with a netmask. The format of the
file is the same as the ethers files, except that entries of the form:
00:00:0C Cisco
can be provided, with the 3-byte OUI and the name for a vendor, and entries such as:
00-00-0C-07-AC/40 All-HSRP-routers
can be specified, with a MAC address and a mask indicating how many bits of the address must match. The above entry, for example, has 40 significant bits, or 5 bytes, and would match addresses from 00-00-0C-07-AC-00 through 00-00-0C-07-AC-FF. The mask need not be a multiple of 8.
The manuf file is looked for in the same directory as the global preferences file.
- Name Resolution (ipxnets)
-
The ipxnets files are used to correlate 4-byte IPX network numbers to
names. First the global ipxnets file is tried and if that address is not
found there the personal one is tried next.
The format is the same as the ethers file, except that each address is four bytes instead of six. Additionally, the address can be represented as a single hexadecimal number, as is more common in the IPX world, rather than four hex octets. For example, these four lines are valid lines of an ipxnets file:
C0.A8.2C.00 HR c0-a8-1c-00 CEO 00:00:BE:EF IT_Server1 110f FileServer3
The global ipxnets file is looked for in the /etc directory on UNIX-compatible systems, and in the main installation directory (for example, C:\Program Files\Wireshark) on Windows systems.
The personal ipxnets file is looked for in the same directory as the personal preferences file.
ENVIRONMENT VARIABLES
- WIRESHARK_DEBUG_EP_NO_CHUNKS
- Normally per-packet memory is allocated in large ``chunks.'' This behavior doesn't work well with debugging tools such as Valgrind or ElectricFence. Export this environment variable to force individual allocations. Note: disabling chunks also disables canaries (see below).
- WIRESHARK_DEBUG_SE_NO_CHUNKS
- Normally per-file memory is allocated in large ``chunks.'' This behavior doesn't work well with debugging tools such as Valgrind or ElectricFence. Export this environment variable to force individual allocations. Note: disabling chunks also disables canaries (see below).
- WIRESHARK_DEBUG_EP_NO_CANARY
- Normally per-packet memory allocations are separated by ``canaries'' which allow detection of memory overruns. This comes at the expense of some extra memory usage. Exporting this environment variable disables these canaries.
- WIRESHARK_DEBUG_SE_USE_CANARY
- Exporting this environment variable causes per-file memory allocations to be protected with ``canaries'' which allow for detection of memory overruns. This comes at the expense of significant extra memory usage.
- WIRESHARK_DEBUG_SCRUB_MEMORY
- If this environment variable is set, the contents of per-packet and per-file memory is initialized to 0xBADDCAFE when the memory is allocated and is reset to 0xDEADBEEF when the memory is freed. This functionality is useful mainly to developers looking for bugs in the way memory is handled.
- WIRESHARK_DEBUG_WMEM_OVERRIDE
- Setting this environment variable forces the wmem framework to use the specified allocator backend for *all* allocations, regardless of which backend is normally specified by the code. This is mainly useful to developers when testing or debugging. See README.wmem in the source distribution for details.
- WIRESHARK_RUN_FROM_BUILD_DIRECTORY
- This environment variable causes the plugins and other data files to be loaded from the build directory (where the program was compiled) rather than from the standard locations. It has no effect when the program in question is running with root (or setuid) permissions on *NIX.
- WIRESHARK_DATA_DIR
- This environment variable causes the various data files to be loaded from a directory other than the standard locations. It has no effect when the program in question is running with root (or setuid) permissions on *NIX.
- WIRESHARK_PYTHON_DIR
- This environment variable points to an alternate location for Python. It has no effect when the program in question is running with root (or setuid) permissions on *NIX.
- ERF_RECORDS_TO_CHECK
- This environment variable controls the number of ERF records checked when deciding if a file really is in the ERF format. Setting this environment variable a number higher than the default (20) would make false positives less likely.
- IPFIX_RECORDS_TO_CHECK
- This environment variable controls the number of IPFIX records checked when deciding if a file really is in the IPFIX format. Setting this environment variable a number higher than the default (20) would make false positives less likely.
- WIRESHARK_ABORT_ON_DISSECTOR_BUG
- If this environment variable is set, Rawshark will call abort(3) when a dissector bug is encountered. abort(3) will cause the program to exit abnormally; if you are running Rawshark in a debugger, it should halt in the debugger and allow inspection of the process, and, if you are not running it in a debugger, it will, on some OSes, assuming your environment is configured correctly, generate a core dump file. This can be useful to developers attempting to troubleshoot a problem with a protocol dissector.
- WIRESHARK_EP_VERIFY_POINTERS
- This environment variable, if set, causes certain uses of pointers to be audited to ensure they do not point to memory that is deallocated after each packet has been fully dissected. This can be useful to developers writing or auditing code.
- WIRESHARK_SE_VERIFY_POINTERS
- This environment variable, if set, causes certain uses of pointers to be audited to ensure they do not point to memory that is deallocated after when a capture file is closed. This can be useful to developers writing or auditing code.
- WIRESHARK_ABORT_ON_OUT_OF_MEMORY
- This environment variable, if present, causes abort(3) to be called if certain out-of-memory conditions (which normally result in an exception and an explanatory error message) are experienced. This can be useful to developers debugging out-of-memory conditions.
NOTES
Rawshark is part of the Wireshark distribution. The latest version of Wireshark can be found at <http://www.wireshark.org>.HTML versions of the Wireshark project man pages are available at: <http://www.wireshark.org/docs/man-pages>.
AUTHORS
Rawshark uses the same packet dissection code that Wireshark does, as well as using many other modules from Wireshark; see the list of authors in the Wireshark man page for a list of authors of that code.